English

RD Sharma solutions for Mathematics [English] Class 12 chapter 17 - Increasing and Decreasing Functions [Latest edition]

Advertisements

Chapters

RD Sharma solutions for Mathematics [English] Class 12 chapter 17 - Increasing and Decreasing Functions - Shaalaa.com
Advertisements

Solutions for Chapter 17: Increasing and Decreasing Functions

Below listed, you can find solutions for Chapter 17 of CBSE, Karnataka Board PUC RD Sharma for Mathematics [English] Class 12.


Exercise 17.1Exercise 17.2Exercise 17.3Exercise 17.4
Exercise 17.1 [Page 10]

RD Sharma solutions for Mathematics [English] Class 12 17 Increasing and Decreasing Functions Exercise 17.1 [Page 10]

Exercise 17.1 | Q 1 | Page 10

Prove that the function f(x) = loge x is increasing on (0, ∞) ?

Exercise 17.1 | Q 2 | Page 10

Prove that the function f(x) = loga x is increasing on (0, ∞) if a > 1 and decreasing on (0, ∞), if 0 < a < 1 ?

Exercise 17.1 | Q 3 | Page 10

Prove that f(x) = ax + b, where a, b are constants and a > 0 is an increasing function on R ?

Exercise 17.1 | Q 4 | Page 10

Prove that f(x) = ax + b, where a, b are constants and a < 0 is a decreasing function on R ?

Exercise 17.1 | Q 5 | Page 10

Show that f(x) = \[\frac{1}{x}\] is a decreasing function on (0, ∞) ?

Exercise 17.1 | Q 6 | Page 10

Show that f(x) = \[\frac{1}{1 + x^2}\] decreases in the interval [0, ∞) and increases in the interval (−∞, 0] ?

Exercise 17.1 | Q 7 | Page 10

Show that f(x) = \[\frac{1}{1 + x^2}\] is neither increasing nor decreasing on R ?

Exercise 17.1 | Q 8 | Page 10

Without using the derivative, show that the function f (x) = | x | is.
(a) strictly increasing in (0, ∞)
(b) strictly decreasing in (−∞, 0) .

Exercise 17.1 | Q 9 | Page 10

Without using the derivative show that the function f (x) = 7x − 3 is strictly increasing function on R ?

Exercise 17.2 [Pages 33 - 35]

RD Sharma solutions for Mathematics [English] Class 12 17 Increasing and Decreasing Functions Exercise 17.2 [Pages 33 - 35]

Exercise 17.2 | Q 1.01 | Page 33

Find the interval in which the following function are increasing or decreasing f(x) = 10 − 6x − 2x2  ?

Exercise 17.2 | Q 1.02 | Page 33

Find the interval in which the following function are increasing or decreasing  f(x) = x2 + 2x − 5  ?

Exercise 17.2 | Q 1.03 | Page 33

Find the interval in which the following function are increasing or decreasing  f(x) = 6 − 9x − x2  ?

Exercise 17.2 | Q 1.04 | Page 33

Find the interval in which the following function are increasing or decreasing   f(x) = 2x3 − 12x2 + 18x + 15 ?

Exercise 17.2 | Q 1.05 | Page 33

Find the interval in which the following function are increasing or decreasing f(x) = 5 + 36x + 3x2 − 2x?

Exercise 17.2 | Q 1.06 | Page 33

Find the interval in which the following function are increasing or decreasing f(x) = 8 + 36x + 3x2 − 2x?

Exercise 17.2 | Q 1.07 | Page 33

Find the interval in which the following function are increasing or decreasing  f(x) = 5x3 − 15x2 − 120x + 3 ?

Exercise 17.2 | Q 1.08 | Page 33

Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 − 36x + 2 ?

Exercise 17.2 | Q 1.09 | Page 33

Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 15x2 + 36x + 1 ?

Exercise 17.2 | Q 1.1 | Page 33

Find the interval in which the following function are increasing or decreasing f(x) = 2x3 + 9x2 + 12x + 20  ?

Exercise 17.2 | Q 1.11 | Page 33

Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 9x2 + 12x − 5 ?

Exercise 17.2 | Q 1.12 | Page 33

Find the interval in which the following function are increasing or decreasing f(x) = 6 + 12x + 3x2 − 2x3 ?

Exercise 17.2 | Q 1.13 | Page 33

Find the interval in which the following function are increasing or decreasing  f(x) = 2x3 − 24x + 107  ?

Exercise 17.2 | Q 1.14 | Page 33

Find the interval in which the following function are increasing or decreasing f(x) = −2x3 − 9x2 − 12x + 1  ?

Exercise 17.2 | Q 1.15 | Page 33

Find the interval in which the following function are increasing or decreasing f(x) = (x − 1) (x − 2)?

Exercise 17.2 | Q 1.16 | Page 33

Find the interval in which the following function are increasing or decreasing f(x) = x3 − 12x2 + 36x + 17 ?

Exercise 17.2 | Q 1.17 | Page 33

Find the interval in which the following function are increasing or decreasing  f(x) = 2x3 − 24x + 7 ?

Exercise 17.2 | Q 1.18 | Page 33

Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{10} x^4 - \frac{4}{5} x^3 - 3 x^2 + \frac{36}{5}x + 11\] ?

Exercise 17.2 | Q 1.19 | Page 33

Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x ?

Exercise 17.2 | Q 1.2 | Page 33

Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{x^4}{4} + \frac{2}{3} x^3 - \frac{5}{2} x^2 - 6x + 7\] ?

Exercise 17.2 | Q 1.21 | Page 33

Find the interval in which the following function are increasing or decreasing  f(x) = x4 − 4x3 + 4x2 + 15 ?

Exercise 17.2 | Q 1.22 | Page 33

Find the interval in which the following function are increasing or decreasing  f(x) =  \[5 x^\frac{3}{2} - 3 x^\frac{5}{2}\]  x > 0 ?

Exercise 17.2 | Q 1.23 | Page 33

Find the interval in which the following function are increasing or decreasing f(x) = x8 + 6x2  ?

Exercise 17.2 | Q 1.24 | Page 33

Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 + 9x + 15 ?

Exercise 17.2 | Q 1.25 | Page 33

Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \left\{ x(x - 2) \right\}^2\] ?

Exercise 17.2 | Q 1.26 | Page 33

Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = 3 x^4 - 4 x^3 - 12 x^2 + 5\] ?

Exercise 17.2 | Q 1.27 | Page 33

Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] ?

Exercise 17.2 | Q 1.28 | Page 33

Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \log\left( 2 + x \right) - \frac{2x}{2 + x}, x \in R\] ?

Exercise 17.2 | Q 2 | Page 34

Determine the values of x for which the function f(x) = x2 − 6x + 9 is increasing or decreasing. Also, find the coordinates of the point on the curve y = x2 − 6x + 9 where the normal is parallel to the line y = x + 5 ? 

Exercise 17.2 | Q 3 | Page 34

Find the intervals in which f(x) = sin x − cos x, where 0 < x < 2π is increasing or decreasing ?

Exercise 17.2 | Q 4 | Page 34

Show that f(x) = e2x is increasing on R.

Exercise 17.2 | Q 5 | Page 34

Show that f(x) = e1/x, x ≠ 0 is a decreasing function for all x ≠ 0 ?

Exercise 17.2 | Q 6 | Page 34

Show that f(x) = loga x, 0 < a < 1 is a decreasing function for all x > 0 ?

Exercise 17.2 | Q 7 | Page 34

Show that f(x) = sin x is increasing on (0, π/2) and decreasing on (π/2, π) and neither increasing nor decreasing in (0, π) ?

Exercise 17.2 | Q 8 | Page 34

Show that f(x) = log sin x is increasing on (0, π/2) and decreasing on (π/2, π) ?

Exercise 17.2 | Q 9 | Page 34

Show that f(x) = x − sin x is increasing for all x ∈ R ?

Exercise 17.2 | Q 10 | Page 34

Show that f(x) = x3 − 15x2 + 75x − 50 is an increasing function for all x ∈ R ?

Exercise 17.2 | Q 11 | Page 34

Show that f(x) = cos2 x is a decreasing function on (0, π/2) ?

Exercise 17.2 | Q 12 | Page 34

Show that f(x) = sin x is an increasing function on (−π/2, π/2) ?

Exercise 17.2 | Q 13 | Page 34

Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).

Exercise 17.2 | Q 14 | Page 34

Show that f(x) = tan x is an increasing function on (−π/2, π/2) ?

Exercise 17.2 | Q 15 | Page 34

Show that f(x) = tan−1 (sin x + cos x) is a decreasing function on the interval (π/4, π/2) ?

Exercise 17.2 | Q 16 | Page 34

Show that the function f(x) = sin (2x + π/4) is decreasing on (3π/8, 5π/8) ?

Exercise 17.2 | Q 17 | Page 34

Show that the function f(x) = cot \[-\] l(sinx + cosx) is decreasing on \[\left( 0, \frac{\pi}{4} \right)\] and increasing on \[\left( 0, \frac{\pi}{4} \right)\] ?

Exercise 17.2 | Q 18 | Page 34

Show that f(x) = (x − 1) ex + 1 is an increasing function for all x > 0 ?

Exercise 17.2 | Q 19 | Page 34

Show that the function x2 − x + 1 is neither increasing nor decreasing on (0, 1) ?

Exercise 17.2 | Q 20 | Page 34

Show that f(x) = x9 + 4x7 + 11 is an increasing function for all x ∈ R ? 

Exercise 17.2 | Q 21 | Page 35

Prove that the function f(x) = x3 − 6x2 + 12x − 18 is increasing on R ?

Exercise 17.2 | Q 22 | Page 35

State when a function f(x) is said to be increasing on an interval [a, b]. Test whether the function f(x) = x2 − 6x + 3 is increasing on the interval [4, 6] ?

Exercise 17.2 | Q 23 | Page 35

Show that f(x) = sin x − cos x is an increasing function on (−π/4, π/4) ?

Exercise 17.2 | Q 24 | Page 35

Show that f(x) = tan−1 x − x is a decreasing function on R ?

Exercise 17.2 | Q 25 | Page 35

Determine whether f(x) = −x/2 + sin x is increasing or decreasing on (−π/3, π/3) ?

Exercise 17.2 | Q 26 | Page 35

Find the intervals in which f(x) = log (1 + x) −\[\frac{x}{1 + x}\] is increasing or decreasing ?

Exercise 17.2 | Q 27 | Page 35

Find the intervals in which f(x) = (x + 2) e−x is increasing or decreasing ?

Exercise 17.2 | Q 28 | Page 35

Show that the function f given by f(x) = 10x is increasing for all x ?

Exercise 17.2 | Q 29 | Page 35

Prove that the function f given by f(x) = x − [x] is increasing in (0, 1) ?

Exercise 17.2 | Q 30.1 | Page 35

Prove that the following function is increasing on R f \[(x) =\]3 \[x^5\] + 40 \[x^3\] + 240\[x\] ?

Exercise 17.2 | Q 30.2 | Page 35

Prove that the following function is increasing on R f \[f\left( x \right) = 4 x^3 - 18 x^2 + 27x - 27\] ?

Exercise 17.2 | Q 31 | Page 35

Prove that the function f given by f(x) = log cos x is strictly increasing on (−π/2, 0) and strictly decreasing on (0, π/2) ?

Exercise 17.2 | Q 32 | Page 35

Prove that the function f given by f(x) = x3 − 3x2 + 4x is strictly increasing on R ?

Exercise 17.2 | Q 33 | Page 35

Prove that the function f(x) = cos x is:
(i) strictly decreasing in (0, π)
(ii) strictly increasing in (π, 2π)
(iii) neither increasing nor decreasing in (0, 2π).

Exercise 17.2 | Q 34 | Page 35

Show that f(x) = x2 − x sin x is an increasing function on (0, π/2) ?

Exercise 17.2 | Q 35 | Page 35

Find the value(s) of a for which f(x) = x3 − ax is an increasing function on R ?

Exercise 17.2 | Q 36 | Page 35

Find the values of b for which the function f(x) = sin x − bx + c is a decreasing function on R ?

Exercise 17.2 | Q 37 | Page 35

Show that f(x) = x + cos x − a is an increasing function on R for all values of a ?

Exercise 17.2 | Q 38 | Page 35

Let f defined on [0, 1] be twice differentiable such that | f (x) | ≤ 1 for all x ∈ [0, 1]. If f(0) = f(1), then show that | f'(x) | < 1 for all x ∈ [ 0, 1] ?

Exercise 17.2 | Q 39.1 | Page 35

Find the interval in which f(x) is increasing or decreasing f(x) = x|x|, x \[\in\] R ?

Exercise 17.2 | Q 39.2 | Page 35

Find the interval in which f(x) is increasing or decreasing f(x) = sinx + |sin x|, 0 < x \[\leq 2\pi\] ?

Exercise 17.2 | Q 39.3 | Page 35

Find the interval in which f(x) is increasing or decreasing f(x) = sinx(1 + cosx), 0 < x < \[\frac{\pi}{2}\] ?

Exercise 17.3 [Pages 39 - 40]

RD Sharma solutions for Mathematics [English] Class 12 17 Increasing and Decreasing Functions Exercise 17.3 [Pages 39 - 40]

Exercise 17.3 | Q 1 | Page 39

What are the values of 'a' for which f(x) = ax is increasing on R ?

Exercise 17.3 | Q 2 | Page 39

What are the values of 'a' for which f(x) = ax is decreasing on R ? 

Exercise 17.3 | Q 3 | Page 39

Write the set of values of 'a' for which f(x) = loga x is increasing in its domain ?

Exercise 17.3 | Q 4 | Page 39

Write the set of values of 'a' for which f(x) = loga x is decreasing in its domain ?

Exercise 17.3 | Q 5 | Page 39

Find 'a' for which f(x) = a (x + sin x) + a is increasing on R ?

Exercise 17.3 | Q 6 | Page 39

Find the values of 'a' for which the function f(x) = sin x − ax + 4 is increasing function on R ?

Exercise 17.3 | Q 7 | Page 39

Find the set of values of 'b' for which f(x) = b (x + cos x) + 4 is decreasing on R ?

Exercise 17.3 | Q 8 | Page 40

Find the set of values of 'a' for which f(x) = x + cos x + ax + b is increasing on R ?

Exercise 17.3 | Q 9 | Page 40

Write the set of values of k for which f(x) = kx − sin x is increasing on R ?

Exercise 17.3 | Q 10 | Page 40

If g (x) is a decreasing function on R and f(x) = tan−1 [g (x)]. State whether f(x) is increasing or decreasing on R ?

Exercise 17.3 | Q 11 | Page 40

Write the set of values of a for which the function f(x) = ax + b is decreasing for all x ∈ R ?

Exercise 17.3 | Q 12 | Page 40

Write the interval in which f(x) = sin x + cos x, x ∈ [0, π/2] is increasing ?

Exercise 17.3 | Q 13 | Page 40

State whether f(x) = tan x − x is increasing or decreasing its domain ?

Exercise 17.3 | Q 14 | Page 40

Write the set of values of a for which f(x) = cos x + a2 x + b is strictly increasing on R ?

Exercise 17.4 [Pages 40 - 42]

RD Sharma solutions for Mathematics [English] Class 12 17 Increasing and Decreasing Functions Exercise 17.4 [Pages 40 - 42]

Exercise 17.4 | Q 1 | Page 40

The interval of increase of the function f(x) = x − ex + tan (2π/7) is

  • (0, ∞)

  • (−∞, 0)

  • (1, ∞)

  • (−∞, 1)

Exercise 17.4 | Q 2 | Page 40

The function f(x) = cot−1 x + x increases in the interval

  • (1, ∞)

  • (−1, ∞)

  • (−∞, ∞)

  • (0, ∞)

Exercise 17.4 | Q 3 | Page 40

The function f(x) = xx decreases on the interval

  • (0, e)

  • (0, 1)

  • (0, 1/e)

  • none of these

Exercise 17.4 | Q 4 | Page 40

The function f(x) = 2 log (x − 2) − x2 + 4x + 1 increases on the interval

  • (1, 2)

  • (2, 3)

  • (1, 3)

  • (2, 4)

Exercise 17.4 | Q 5 | Page 40

If the function f(x) = 2x2 − kx + 5 is increasing on [1, 2], then k lies in the interval

  •  (−∞, 4)

  • (4, ∞)

  • (−∞, 8)

  • (8, ∞)

Exercise 17.4 | Q 6 | Page 40

Let f(x) = x3 + ax2 + bx + 5 sin2x be an increasing function on the set R. Then, a and b satisfy.

  •  a2 − 3b − 15 > 0

  • a2 − 3b + 15 > 0

  • a2 − 3b + 15 < 0

  • a > 0 and b > 0

Exercise 17.4 | Q 7 | Page 40

The function \[f\left( x \right) = \log_e \left( x^3 + \sqrt{x^6 + 1} \right)\] is of the following types:

  • even and increasing

  • odd and increasing

  • even and decreasing

  • odd and decreasing

Exercise 17.4 | Q 8 | Page 40

If the function f(x) = 2 tan x + (2a + 1) loge | sec x | + (a − 2) x is increasing on R, then

  • a ∈ (1/2, ∞)

  • a ∈ (−1/2, 1/2)

  • a = 1/2

  • a ∈ R

Exercise 17.4 | Q 9 | Page 40

Let \[f\left( x \right) = \tan^{- 1} \left( g\left( x \right) \right),\],where g (x) is monotonically increasing for 0 < x < \[\frac{\pi}{2} .\] Then, f(x) is

  • increasing on (0, π/2)

  • decreasing on (0, π/2)

  • increasing on (0, π/4) and decreasing on (π/4, π/2)

  • none of these

Exercise 17.4 | Q 10 | Page 40

Let f(x) = x3 − 6x2 + 15x + 3. Then,

  •  f(x) > 0 for all x ∈ R

  •  f(x) > f(x + 1) for all x ∈ R

  • f(x) is invertible

  • none of these

Exercise 17.4 | Q 11 | Page 41

The function f(x) = x2 e−x is monotonic increasing when

  •  x ∈ R − [0, 2]

  • 0 < x < 2

  • 2 < x < ∞

  • x < 0

Exercise 17.4 | Q 12 | Page 41

Function f(x) = cos x − 2 λ x is monotonic decreasing when

  • λ > 1/2

  • λ < 1/2

  • λ < 2

  • λ > 2

Exercise 17.4 | Q 13 | Page 41

In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is

  • monotonically increasing

  • monotonically decreasing

  • not monotonic

  • constant

Exercise 17.4 | Q 14 | Page 41

Function f(x) = x3 − 27x + 5 is monotonically increasing when

  • x < −3

  • | x | > 3

  • x ≤ −3 

  • | x | ≥ 3

Exercise 17.4 | Q 15 | Page 41

Function f(x) = 2x3 − 9x2 + 12x + 29 is monotonically decreasing when

  •  x < 2

  • x > 2

  •  x > 3

  • 1 < x < 2

Exercise 17.4 | Q 16 | Page 41

If the function f(x) = kx3 − 9x2 + 9x + 3 is monotonically increasing in every interval, then

  •  k < 3

  • k ≤ 3

  • k > 3

  •  k ≥ 3

Exercise 17.4 | Q 17 | Page 41

f(x) = 2x − tan−1 x − log \[\left\{ x + \sqrt{x^2 + 1} \right\}\] is monotonically increasing when

 

  •  x > 0

  • x < 0

  • x ∈ R

  •  x ∈ R − {0}

Exercise 17.4 | Q 18 | Page 41

Function f(x) = | x | − | x − 1 | is monotonically increasing when

 

 

 

 

 

 

 

 

 

 

 

  • x < 0

  •  x > 1

  • x < 1

  • 0 < x < 1

Exercise 17.4 | Q 19 | Page 41

Every invertible function is

  • monotonic function

  • constant function

  • identity function

  • not necessarily monotonic function

Exercise 17.4 | Q 20 | Page 41

In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is

  • increasing

  • decreasing

  • constant

  • none of these

Exercise 17.4 | Q 21 | Page 41

If the function f(x) = cos |x| − 2ax + b increases along the entire number scale, then

 

  •  a = b

  • \[a = \frac{1}{2}b\]

  • \[a \leq - \frac{1}{2}\]

  • \[a > - \frac{3}{2}\]

Exercise 17.4 | Q 22 | Page 41

The function \[f\left( x \right) = \frac{x}{1 + \left| x \right|}\] is 

 

  • strictly increasing

  • strictly decreasing

  • neither increasing nor decreasing

  • none of these

Exercise 17.4 | Q 23 | Page 41

The function \[f\left( x \right) = \frac{\lambda \sin x + 2 \cos x}{\sin x + \cos x}\] is increasing, if

 

  • λ < 1

  • λ > 1

  • λ < 2

  • λ > 2

Exercise 17.4 | Q 24 | Page 41

Function f(x) = ax is increasing on R, if

  • a > 0

  • a < 0

  • 0 < a < 1

  • a > 1

Exercise 17.4 | Q 25 | Page 41

Function f(x) = loga x is increasing on R, if

  • 0 < a < 1

  • a > 1

  • a < 1

  • a > 0

Exercise 17.4 | Q 26 | Page 41

Let ϕ(x) = f(x) + f(2a − x) and f"(x) > 0 for all x ∈ [0, a]. Then, ϕ (x)

  • increases on [0, a]

  • decreases on [0, a]

  • increases on [−a, 0]

  • decreases on [a, 2a]

Exercise 17.4 | Q 27 | Page 41

If the function f(x) = x2 − kx + 5 is increasing on [2, 4], then

  •  k ∈ (2, ∞)

  • k ∈ (−∞, 2)

  • k ∈ (4, ∞)

  •  k ∈ (−∞, 4).

Exercise 17.4 | Q 28 | Page 41

The function f(x) = −x/2 + sin x defined on [−π/3, π/3] is

  • increasing

  • decreasing

  • constant

  • none of these

Exercise 17.4 | Q 29 | Page 42

If the function f(x) = x3 − 9kx2 + 27x + 30 is increasing on R, then

  • −1 ≤ k < 1

  •  k < −1 or k > 1

  • 0 < k < 1

  • −1 < k < 0

Exercise 17.4 | Q 30 | Page 42

The function f(x) = x9 + 3x7 + 64 is increasing on

  • R

  • (−∞, 0)

  • (0, ∞)

  •  R0

Solutions for 17: Increasing and Decreasing Functions

Exercise 17.1Exercise 17.2Exercise 17.3Exercise 17.4
RD Sharma solutions for Mathematics [English] Class 12 chapter 17 - Increasing and Decreasing Functions - Shaalaa.com

RD Sharma solutions for Mathematics [English] Class 12 chapter 17 - Increasing and Decreasing Functions

Shaalaa.com has the CBSE, Karnataka Board PUC Mathematics Mathematics [English] Class 12 CBSE, Karnataka Board PUC solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. RD Sharma solutions for Mathematics Mathematics [English] Class 12 CBSE, Karnataka Board PUC 17 (Increasing and Decreasing Functions) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.

Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. RD Sharma textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.

Concepts covered in Mathematics [English] Class 12 chapter 17 Increasing and Decreasing Functions are Maximum and Minimum Values of a Function in a Closed Interval, Maxima and Minima, Simple Problems on Applications of Derivatives, Graph of Maxima and Minima, Approximations, Tangents and Normals, Increasing and Decreasing Functions, Rate of Change of Bodies or Quantities, Introduction to Applications of Derivatives.

Using RD Sharma Mathematics [English] Class 12 solutions Increasing and Decreasing Functions exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in RD Sharma Solutions are essential questions that can be asked in the final exam. Maximum CBSE, Karnataka Board PUC Mathematics [English] Class 12 students prefer RD Sharma Textbook Solutions to score more in exams.

Get the free view of Chapter 17, Increasing and Decreasing Functions Mathematics [English] Class 12 additional questions for Mathematics Mathematics [English] Class 12 CBSE, Karnataka Board PUC, and you can use Shaalaa.com to keep it handy for your exam preparation.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×