Advertisements
Online Mock Tests
Chapters
2: Functions
3: Binary Operations
4: Inverse Trigonometric Functions
5: Algebra of Matrices
6: Determinants
7: Adjoint and Inverse of a Matrix
8: Solution of Simultaneous Linear Equations
9: Continuity
10: Differentiability
11: Differentiation
12: Higher Order Derivatives
13: Derivative as a Rate Measurer
14: Differentials, Errors and Approximations
15: Mean Value Theorems
16: Tangents and Normals
▶ 17: Increasing and Decreasing Functions
18: Maxima and Minima
19: Indefinite Integrals
20: Definite Integrals
21: Areas of Bounded Regions
22: Differential Equations
23: Algebra of Vectors
24: Scalar Or Dot Product
25: Vector or Cross Product
26: Scalar Triple Product
27: Direction Cosines and Direction Ratios
28: Straight Line in Space
29: The Plane
30: Linear programming
31: Probability
32: Mean and Variance of a Random Variable
33: Binomial Distribution
![RD Sharma solutions for Mathematics [English] Class 12 chapter 17 - Increasing and Decreasing Functions RD Sharma solutions for Mathematics [English] Class 12 chapter 17 - Increasing and Decreasing Functions - Shaalaa.com](/images/9788193663011-mathematics-english-class-12_6:be05c27f33094688837f0fdb2cb69ac3.jpg)
Advertisements
Solutions for Chapter 17: Increasing and Decreasing Functions
Below listed, you can find solutions for Chapter 17 of CBSE, Karnataka Board PUC RD Sharma for Mathematics [English] Class 12.
RD Sharma solutions for Mathematics [English] Class 12 17 Increasing and Decreasing Functions Exercise 17.1 [Page 10]
Prove that the function f(x) = loge x is increasing on (0, ∞) ?
Prove that the function f(x) = loga x is increasing on (0, ∞) if a > 1 and decreasing on (0, ∞), if 0 < a < 1 ?
Prove that f(x) = ax + b, where a, b are constants and a > 0 is an increasing function on R ?
Prove that f(x) = ax + b, where a, b are constants and a < 0 is a decreasing function on R ?
Show that f(x) = \[\frac{1}{x}\] is a decreasing function on (0, ∞) ?
Show that f(x) = \[\frac{1}{1 + x^2}\] decreases in the interval [0, ∞) and increases in the interval (−∞, 0] ?
Show that f(x) = \[\frac{1}{1 + x^2}\] is neither increasing nor decreasing on R ?
Without using the derivative, show that the function f (x) = | x | is.
(a) strictly increasing in (0, ∞)
(b) strictly decreasing in (−∞, 0) .
Without using the derivative show that the function f (x) = 7x − 3 is strictly increasing function on R ?
RD Sharma solutions for Mathematics [English] Class 12 17 Increasing and Decreasing Functions Exercise 17.2 [Pages 33 - 35]
Find the interval in which the following function are increasing or decreasing f(x) = 10 − 6x − 2x2 ?
Find the interval in which the following function are increasing or decreasing f(x) = x2 + 2x − 5 ?
Find the interval in which the following function are increasing or decreasing f(x) = 6 − 9x − x2 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 12x2 + 18x + 15 ?
Find the interval in which the following function are increasing or decreasing f(x) = 5 + 36x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing f(x) = 8 + 36x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing f(x) = 5x3 − 15x2 − 120x + 3 ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 − 36x + 2 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 15x2 + 36x + 1 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 + 9x2 + 12x + 20 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 9x2 + 12x − 5 ?
Find the interval in which the following function are increasing or decreasing f(x) = 6 + 12x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 24x + 107 ?
Find the interval in which the following function are increasing or decreasing f(x) = −2x3 − 9x2 − 12x + 1 ?
Find the interval in which the following function are increasing or decreasing f(x) = (x − 1) (x − 2)2 ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 12x2 + 36x + 17 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 24x + 7 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{10} x^4 - \frac{4}{5} x^3 - 3 x^2 + \frac{36}{5}x + 11\] ?
Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{x^4}{4} + \frac{2}{3} x^3 - \frac{5}{2} x^2 - 6x + 7\] ?
Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x3 + 4x2 + 15 ?
Find the interval in which the following function are increasing or decreasing f(x) = \[5 x^\frac{3}{2} - 3 x^\frac{5}{2}\] x > 0 ?
Find the interval in which the following function are increasing or decreasing f(x) = x8 + 6x2 ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 + 9x + 15 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \left\{ x(x - 2) \right\}^2\] ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = 3 x^4 - 4 x^3 - 12 x^2 + 5\] ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \log\left( 2 + x \right) - \frac{2x}{2 + x}, x \in R\] ?
Determine the values of x for which the function f(x) = x2 − 6x + 9 is increasing or decreasing. Also, find the coordinates of the point on the curve y = x2 − 6x + 9 where the normal is parallel to the line y = x + 5 ?
Find the intervals in which f(x) = sin x − cos x, where 0 < x < 2π is increasing or decreasing ?
Show that f(x) = e2x is increasing on R.
Show that f(x) = e1/x, x ≠ 0 is a decreasing function for all x ≠ 0 ?
Show that f(x) = loga x, 0 < a < 1 is a decreasing function for all x > 0 ?
Show that f(x) = sin x is increasing on (0, π/2) and decreasing on (π/2, π) and neither increasing nor decreasing in (0, π) ?
Show that f(x) = log sin x is increasing on (0, π/2) and decreasing on (π/2, π) ?
Show that f(x) = x − sin x is increasing for all x ∈ R ?
Show that f(x) = x3 − 15x2 + 75x − 50 is an increasing function for all x ∈ R ?
Show that f(x) = cos2 x is a decreasing function on (0, π/2) ?
Show that f(x) = sin x is an increasing function on (−π/2, π/2) ?
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).
Show that f(x) = tan x is an increasing function on (−π/2, π/2) ?
Show that f(x) = tan−1 (sin x + cos x) is a decreasing function on the interval (π/4, π/2) ?
Show that the function f(x) = sin (2x + π/4) is decreasing on (3π/8, 5π/8) ?
Show that the function f(x) = cot \[-\] l(sinx + cosx) is decreasing on \[\left( 0, \frac{\pi}{4} \right)\] and increasing on \[\left( 0, \frac{\pi}{4} \right)\] ?
Show that f(x) = (x − 1) ex + 1 is an increasing function for all x > 0 ?
Show that the function x2 − x + 1 is neither increasing nor decreasing on (0, 1) ?
Show that f(x) = x9 + 4x7 + 11 is an increasing function for all x ∈ R ?
Prove that the function f(x) = x3 − 6x2 + 12x − 18 is increasing on R ?
State when a function f(x) is said to be increasing on an interval [a, b]. Test whether the function f(x) = x2 − 6x + 3 is increasing on the interval [4, 6] ?
Show that f(x) = sin x − cos x is an increasing function on (−π/4, π/4) ?
Show that f(x) = tan−1 x − x is a decreasing function on R ?
Determine whether f(x) = −x/2 + sin x is increasing or decreasing on (−π/3, π/3) ?
Find the intervals in which f(x) = log (1 + x) −\[\frac{x}{1 + x}\] is increasing or decreasing ?
Find the intervals in which f(x) = (x + 2) e−x is increasing or decreasing ?
Show that the function f given by f(x) = 10x is increasing for all x ?
Prove that the function f given by f(x) = x − [x] is increasing in (0, 1) ?
Prove that the following function is increasing on R f \[(x) =\]3 \[x^5\] + 40 \[x^3\] + 240\[x\] ?
Prove that the following function is increasing on R f \[f\left( x \right) = 4 x^3 - 18 x^2 + 27x - 27\] ?
Prove that the function f given by f(x) = log cos x is strictly increasing on (−π/2, 0) and strictly decreasing on (0, π/2) ?
Prove that the function f given by f(x) = x3 − 3x2 + 4x is strictly increasing on R ?
Prove that the function f(x) = cos x is:
(i) strictly decreasing in (0, π)
(ii) strictly increasing in (π, 2π)
(iii) neither increasing nor decreasing in (0, 2π).
Show that f(x) = x2 − x sin x is an increasing function on (0, π/2) ?
Find the value(s) of a for which f(x) = x3 − ax is an increasing function on R ?
Find the values of b for which the function f(x) = sin x − bx + c is a decreasing function on R ?
Show that f(x) = x + cos x − a is an increasing function on R for all values of a ?
Let f defined on [0, 1] be twice differentiable such that | f (x) | ≤ 1 for all x ∈ [0, 1]. If f(0) = f(1), then show that | f'(x) | < 1 for all x ∈ [ 0, 1] ?
Find the interval in which f(x) is increasing or decreasing f(x) = x|x|, x \[\in\] R ?
Find the interval in which f(x) is increasing or decreasing f(x) = sinx + |sin x|, 0 < x \[\leq 2\pi\] ?
Find the interval in which f(x) is increasing or decreasing f(x) = sinx(1 + cosx), 0 < x < \[\frac{\pi}{2}\] ?
RD Sharma solutions for Mathematics [English] Class 12 17 Increasing and Decreasing Functions Exercise 17.3 [Pages 39 - 40]
What are the values of 'a' for which f(x) = ax is increasing on R ?
What are the values of 'a' for which f(x) = ax is decreasing on R ?
Write the set of values of 'a' for which f(x) = loga x is increasing in its domain ?
Write the set of values of 'a' for which f(x) = loga x is decreasing in its domain ?
Find 'a' for which f(x) = a (x + sin x) + a is increasing on R ?
Find the values of 'a' for which the function f(x) = sin x − ax + 4 is increasing function on R ?
Find the set of values of 'b' for which f(x) = b (x + cos x) + 4 is decreasing on R ?
Find the set of values of 'a' for which f(x) = x + cos x + ax + b is increasing on R ?
Write the set of values of k for which f(x) = kx − sin x is increasing on R ?
If g (x) is a decreasing function on R and f(x) = tan−1 [g (x)]. State whether f(x) is increasing or decreasing on R ?
Write the set of values of a for which the function f(x) = ax + b is decreasing for all x ∈ R ?
Write the interval in which f(x) = sin x + cos x, x ∈ [0, π/2] is increasing ?
State whether f(x) = tan x − x is increasing or decreasing its domain ?
Write the set of values of a for which f(x) = cos x + a2 x + b is strictly increasing on R ?
RD Sharma solutions for Mathematics [English] Class 12 17 Increasing and Decreasing Functions Exercise 17.4 [Pages 40 - 42]
The interval of increase of the function f(x) = x − ex + tan (2π/7) is
(0, ∞)
(−∞, 0)
(1, ∞)
(−∞, 1)
The function f(x) = cot−1 x + x increases in the interval
(1, ∞)
(−1, ∞)
(−∞, ∞)
(0, ∞)
The function f(x) = xx decreases on the interval
(0, e)
(0, 1)
(0, 1/e)
none of these
The function f(x) = 2 log (x − 2) − x2 + 4x + 1 increases on the interval
(1, 2)
(2, 3)
(1, 3)
(2, 4)
If the function f(x) = 2x2 − kx + 5 is increasing on [1, 2], then k lies in the interval
(−∞, 4)
(4, ∞)
(−∞, 8)
(8, ∞)
Let f(x) = x3 + ax2 + bx + 5 sin2x be an increasing function on the set R. Then, a and b satisfy.
a2 − 3b − 15 > 0
a2 − 3b + 15 > 0
a2 − 3b + 15 < 0
a > 0 and b > 0
The function \[f\left( x \right) = \log_e \left( x^3 + \sqrt{x^6 + 1} \right)\] is of the following types:
even and increasing
odd and increasing
even and decreasing
odd and decreasing
If the function f(x) = 2 tan x + (2a + 1) loge | sec x | + (a − 2) x is increasing on R, then
a ∈ (1/2, ∞)
a ∈ (−1/2, 1/2)
a = 1/2
a ∈ R
Let \[f\left( x \right) = \tan^{- 1} \left( g\left( x \right) \right),\],where g (x) is monotonically increasing for 0 < x < \[\frac{\pi}{2} .\] Then, f(x) is
increasing on (0, π/2)
decreasing on (0, π/2)
increasing on (0, π/4) and decreasing on (π/4, π/2)
none of these
Let f(x) = x3 − 6x2 + 15x + 3. Then,
f(x) > 0 for all x ∈ R
f(x) > f(x + 1) for all x ∈ R
f(x) is invertible
none of these
The function f(x) = x2 e−x is monotonic increasing when
x ∈ R − [0, 2]
0 < x < 2
2 < x < ∞
x < 0
Function f(x) = cos x − 2 λ x is monotonic decreasing when
λ > 1/2
λ < 1/2
λ < 2
λ > 2
In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is
monotonically increasing
monotonically decreasing
not monotonic
constant
Function f(x) = x3 − 27x + 5 is monotonically increasing when
x < −3
| x | > 3
x ≤ −3
| x | ≥ 3
Function f(x) = 2x3 − 9x2 + 12x + 29 is monotonically decreasing when
x < 2
x > 2
x > 3
1 < x < 2
If the function f(x) = kx3 − 9x2 + 9x + 3 is monotonically increasing in every interval, then
k < 3
k ≤ 3
k > 3
k ≥ 3
f(x) = 2x − tan−1 x − log \[\left\{ x + \sqrt{x^2 + 1} \right\}\] is monotonically increasing when
x > 0
x < 0
x ∈ R
x ∈ R − {0}
Function f(x) = | x | − | x − 1 | is monotonically increasing when
x < 0
x > 1
x < 1
0 < x < 1
Every invertible function is
monotonic function
constant function
identity function
not necessarily monotonic function
In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is
increasing
decreasing
constant
none of these
If the function f(x) = cos |x| − 2ax + b increases along the entire number scale, then
a = b
\[a = \frac{1}{2}b\]
\[a \leq - \frac{1}{2}\]
\[a > - \frac{3}{2}\]
The function \[f\left( x \right) = \frac{x}{1 + \left| x \right|}\] is
strictly increasing
strictly decreasing
neither increasing nor decreasing
none of these
The function \[f\left( x \right) = \frac{\lambda \sin x + 2 \cos x}{\sin x + \cos x}\] is increasing, if
λ < 1
λ > 1
λ < 2
λ > 2
Function f(x) = ax is increasing on R, if
a > 0
a < 0
0 < a < 1
a > 1
Function f(x) = loga x is increasing on R, if
0 < a < 1
a > 1
a < 1
a > 0
Let ϕ(x) = f(x) + f(2a − x) and f"(x) > 0 for all x ∈ [0, a]. Then, ϕ (x)
increases on [0, a]
decreases on [0, a]
increases on [−a, 0]
decreases on [a, 2a]
If the function f(x) = x2 − kx + 5 is increasing on [2, 4], then
k ∈ (2, ∞)
k ∈ (−∞, 2)
k ∈ (4, ∞)
k ∈ (−∞, 4).
The function f(x) = −x/2 + sin x defined on [−π/3, π/3] is
increasing
decreasing
constant
none of these
If the function f(x) = x3 − 9kx2 + 27x + 30 is increasing on R, then
−1 ≤ k < 1
k < −1 or k > 1
0 < k < 1
−1 < k < 0
The function f(x) = x9 + 3x7 + 64 is increasing on
R
(−∞, 0)
(0, ∞)
R0
Solutions for 17: Increasing and Decreasing Functions
![RD Sharma solutions for Mathematics [English] Class 12 chapter 17 - Increasing and Decreasing Functions RD Sharma solutions for Mathematics [English] Class 12 chapter 17 - Increasing and Decreasing Functions - Shaalaa.com](/images/9788193663011-mathematics-english-class-12_6:be05c27f33094688837f0fdb2cb69ac3.jpg)
RD Sharma solutions for Mathematics [English] Class 12 chapter 17 - Increasing and Decreasing Functions
Shaalaa.com has the CBSE, Karnataka Board PUC Mathematics Mathematics [English] Class 12 CBSE, Karnataka Board PUC solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. RD Sharma solutions for Mathematics Mathematics [English] Class 12 CBSE, Karnataka Board PUC 17 (Increasing and Decreasing Functions) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.
Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. RD Sharma textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.
Concepts covered in Mathematics [English] Class 12 chapter 17 Increasing and Decreasing Functions are Maximum and Minimum Values of a Function in a Closed Interval, Maxima and Minima, Simple Problems on Applications of Derivatives, Graph of Maxima and Minima, Approximations, Tangents and Normals, Increasing and Decreasing Functions, Rate of Change of Bodies or Quantities, Introduction to Applications of Derivatives.
Using RD Sharma Mathematics [English] Class 12 solutions Increasing and Decreasing Functions exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in RD Sharma Solutions are essential questions that can be asked in the final exam. Maximum CBSE, Karnataka Board PUC Mathematics [English] Class 12 students prefer RD Sharma Textbook Solutions to score more in exams.
Get the free view of Chapter 17, Increasing and Decreasing Functions Mathematics [English] Class 12 additional questions for Mathematics Mathematics [English] Class 12 CBSE, Karnataka Board PUC, and you can use Shaalaa.com to keep it handy for your exam preparation.