English

The Function F(X) = X9 + 3x7 + 64 is Increasing on - Mathematics

Advertisements
Advertisements

Question

The function f(x) = x9 + 3x7 + 64 is increasing on

Options

  • R

  • (−∞, 0)

  • (0, ∞)

  •  R0

MCQ

Solution

 R

\[f\left( x \right) = x^9 + 3 x^7 + 64\]

\[f'\left( x \right) = 9 x^8 + 21 x^6 > 0, \forall x \in R\]

\[\text { So, f(x) is increasing on R } .\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 17: Increasing and Decreasing Functions - Exercise 17.4 [Page 42]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 17 Increasing and Decreasing Functions
Exercise 17.4 | Q 30 | Page 42

RELATED QUESTIONS

The amount of pollution content added in air in a city due to x-diesel vehicles is given by P(x) = 0.005x3 + 0.02x2 + 30x. Find the marginal increase in pollution content when 3 diesel vehicles are added and write which value is indicated in the above question.


The function f (x) = x3 – 3x2 + 3x – 100, x∈ R is _______.

(A) increasing

(B) decreasing

(C) increasing and decreasing

(D) neither increasing nor decreasing


Find the intervals in which the following functions are strictly increasing or decreasing:

x2 + 2x − 5


Find the intervals in which the following functions are strictly increasing or decreasing:

 (x + 1)3 (x − 3)3


On which of the following intervals is the function f given byf(x) = x100 + sin x –1 strictly decreasing?


The interval in which y = x2 e–x is increasing is ______.


Prove that the function f(x) = loge x is increasing on (0, ∞) ?


Show that f(x) = \[\frac{1}{1 + x^2}\] is neither increasing nor decreasing on R ?


Without using the derivative show that the function f (x) = 7x − 3 is strictly increasing function on R ?


Find the interval in which the following function are increasing or decreasing  f(x) = x2 + 2x − 5  ?


Find the interval in which the following function are increasing or decreasing f(x) = 5 + 36x + 3x2 − 2x?


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 + 9x2 + 12x + 20  ?


Find the interval in which the following function are increasing or decreasing  f(x) = 2x3 − 24x + 107  ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{x^4}{4} + \frac{2}{3} x^3 - \frac{5}{2} x^2 - 6x + 7\] ?


Show that f(x) = tan−1 (sin x + cos x) is a decreasing function on the interval (π/4, π/2) ?


Prove that the following function is increasing on R f \[(x) =\]3 \[x^5\] + 40 \[x^3\] + 240\[x\] ?


What are the values of 'a' for which f(x) = ax is increasing on R ?


Find 'a' for which f(x) = a (x + sin x) + a is increasing on R ?


In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is


Function f(x) = ax is increasing on R, if


If the function f(x) = x3 − 9kx2 + 27x + 30 is increasing on R, then


Find `dy/dx,if e^x+e^y=e^(x-y)`


Test whether the following functions are increasing or decreasing : f(x) = x3 – 6x2 + 12x – 16, x ∈ R.


Find the values of x for which the following functions are strictly decreasing : f(x) = x3 – 9x2 + 24x + 12


The price P for the demand D is given as P = 183 + 120D − 3D2, then the value of D for which price is increasing, is ______.


For every value of x, the function f(x) = `1/7^x` is ______ 


2x3 - 6x + 5 is an increasing function, if ____________.


The function `"f"("x") = "x"/"logx"` increases on the interval


Find the value of x for which the function f(x)= 2x3 – 9x2 + 12x + 2 is decreasing.

Given f(x) = 2x3 – 9x2 + 12x + 2

∴ f'(x) = `squarex^2 - square + square`

∴ f'(x) = `6(x - 1)(square)`

Now f'(x) < 0

∴ 6(x – 1)(x – 2) < 0

Since ab < 0 ⇔a < 0 and b < 0 or a > 0 and b < 0

Case 1: (x – 1) < 0 and (x – 2) < 0

∴ x < `square` and x > `square`

Which is contradiction

Case 2: x – 1 and x – 2 < 0

∴ x > `square` and x < `square`

1 < `square` < 2

f(x) is decreasing if and only if x ∈ `square`


If f(x) = x3 + 4x2 + λx + 1(λ ∈ R) is a monotonically decreasing function of x in the largest possible interval `(–2, (–2)/3)` then ______.


If f(x) = x + cosx – a then ______.


Function f(x) = `log(1 + x) - (2x)/(2 + x)` is monotonically increasing when ______.


If f(x) = `x/(x^2 + 1)` is increasing function then the value of x lies in ______.


The function f(x) = x3 + 3x is increasing in interval ______.


Find the values of x for which the function f(x) = `x/(x^2 + 1)` is strictly decreasing.


Find the interval in which the function f(x) = x2e–x is strictly increasing or decreasing.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×