English

Show that F(X) = Tan−1 (Sin X + Cos X) is a Decreasing Function on the Interval (π/4, π/2) ? - Mathematics

Advertisements
Advertisements

Question

Show that f(x) = tan−1 (sin x + cos x) is a decreasing function on the interval (π/4, π/2) ?

Sum

Solution

\[f\left( x \right) = \tan^{- 1} \left( \sin x + \cos x \right)\]

\[f'\left( x \right) = \frac{1}{1 + \left( \sin x + \cos x \right)^2}\left( \cos x - \sin x \right)\]

\[ = \frac{1}{1 + 1 + 2 \sin x \cos x}\left( \cos x - \sin x \right)\]

\[ = \frac{\left( \cos x - \sin x \right)}{2 + \sin 2x}\]

\[\text { Here },\]

\[\frac{\pi}{4} < x < \frac{\pi}{2}\]

\[ \Rightarrow \frac{\pi}{2} < 2x < \pi\]

\[ \Rightarrow \sin 2x > 0\]

\[ \Rightarrow 2 + \sin 2x > 0 . . . \left( 1 \right)\]

\[\text { Also,} \]

\[\frac{\pi}{4} < x < \frac{\pi}{2}\]

\[\cos x < \sin x\]

\[ \Rightarrow \cos x - \sin x < 0 . . . \left( 2 \right)\]

\[f'\left( x \right) = \frac{\left( \cos x - \sin x \right)}{2 + \sin 2x} < 0, \forall x \in \left( \frac{\pi}{4}, \frac{\pi}{2} \right) \left[ \text { From eqs } . (1) \text { and } (2) \right]\]

\[\text { So },f\left( x \right)\text {  is decreasing on }\left( \frac{\pi}{4}, \frac{\pi}{2} \right).\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 17: Increasing and Decreasing Functions - Exercise 17.2 [Page 34]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 17 Increasing and Decreasing Functions
Exercise 17.2 | Q 15 | Page 34

RELATED QUESTIONS

Find the intervals in which the function f given by f(x) = 2x3 − 3x2 − 36x + 7 is

  1. Strictly increasing
  2. Strictly decreasing

Find the intervals in which the following functions are strictly increasing or decreasing:

6 − 9x − x2


Find the values of x for  `y = [x(x - 2)]^2` is an increasing function.


Prove that  y = `(4sin theta)/(2 + cos theta) - theta` is an increasing function of θ in `[0, pi/2]`


Prove that the function f given by f(x) = x2 − x + 1 is neither strictly increasing nor strictly decreasing on (−1, 1).


Let f be a function defined on [a, b] such that f '(x) > 0, for all x ∈ (a, b). Then prove that f is an increasing function on (a, b).


Show that the function f(x) = 4x3 - 18x2 + 27x - 7 is always increasing on R.


Find the interval in which the following function are increasing or decreasing f(x) = 8 + 36x + 3x2 − 2x?


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 9x2 + 12x − 5 ?


Show that f(x) = log sin x is increasing on (0, π/2) and decreasing on (π/2, π) ?


Show that f(x) = sin x is an increasing function on (−π/2, π/2) ?


Show that f(x) = x2 − x sin x is an increasing function on (0, π/2) ?


Find the values of b for which the function f(x) = sin x − bx + c is a decreasing function on R ?


Find the interval in which f(x) is increasing or decreasing f(x) = x|x|, x \[\in\] R ?


If g (x) is a decreasing function on R and f(x) = tan−1 [g (x)]. State whether f(x) is increasing or decreasing on R ?


The function f(x) = xx decreases on the interval


Let \[f\left( x \right) = \tan^{- 1} \left( g\left( x \right) \right),\],where g (x) is monotonically increasing for 0 < x < \[\frac{\pi}{2} .\] Then, f(x) is


Let ϕ(x) = f(x) + f(2a − x) and f"(x) > 0 for all x ∈ [0, a]. Then, ϕ (x)


If x = cos2 θ and y = cot θ then find `dy/dx  at  θ=pi/4` 


Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).


If the demand function is D = 50 - 3p - p2, find the elasticity of demand at (a) p = 5 (b) p = 2 ,  Interpret your result. 


Test whether the following functions are increasing or decreasing : f(x) = x3 – 6x2 + 12x – 16, x ∈ R.


Find the values of x for which the function f(x) = x3 – 12x2 – 144x + 13 (a) increasing (b) decreasing


Show that y = `log (1 + x) – (2x)/(2 + x), x > - 1` is an increasing function on its domain.


Find the value of x, such that f(x) is increasing function.

f(x) = 2x3 - 15x2 - 144x - 7 


Choose the correct alternative.

The function f(x) = x3 - 3x2 + 3x - 100, x ∈ R is


Choose the correct alternative:

The function f(x) = x3 – 3x2 + 3x – 100, x ∈ R is


The function f(x) = 9 - x5 - x7 is decreasing for


The function f(x) = tanx – x ______.


The function which is neither decreasing nor increasing in `(pi/2,(3pi)/2)` is ____________.


Which of the following graph represent the strictly increasing function.


Find the interval in which the function `f` is given by `f(x) = 2x^2 - 3x` is strictly decreasing.


Show that function f(x) = tan x is increasing in `(0, π/2)`.


Let f(x) = `x/sqrt(a^2 + x^2) - (d - x)/sqrt(b^2 + (d - x)^2), x ∈ R` where a, b and d are non-zero real constants. Then ______.


The interval in which the function f(x) = `(4x^2 + 1)/x` is decreasing is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×