English

If G (X) is a Decreasing Function On R And F(X) = Tan−1 [G (X)]. State Whether F(X) is Increasing Or Decreasing On R ? - Mathematics

Advertisements
Advertisements

Question

If g (x) is a decreasing function on R and f(x) = tan−1 [g (x)]. State whether f(x) is increasing or decreasing on R ?

Sum

Solution

\[\text { Given }:g\left( x \right)\text {  is decreasing on R }.\]

\[ \Rightarrow x_1 < x_2 \]

\[ \Rightarrow g\left( x_1 \right) > g\left( x_2 \right)\]

\[ \text {Applying tan}^{- 1} \text { on both sides, we get }\]

\[ \Rightarrow \tan^{- 1} \left\{ g\left( x_1 \right) \right\} > \tan^{- 1} \left\{ g\left( x_2 \right) \right\}\]

\[ \Rightarrow f\left( x_1 \right) > f\left( x_2 \right)\]

\[\text { Thus },\]

\[ x_1 < x_2 \Rightarrow f\left( x_1 \right) > f\left( x_2 \right)\]

\[\text { So,}f\left( x \right)\text {  is decreasing on R }.\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 17: Increasing and Decreasing Functions - Exercise 17.3 [Page 40]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 17 Increasing and Decreasing Functions
Exercise 17.3 | Q 10 | Page 40

RELATED QUESTIONS

Find the intervals in which the function f(x) = 3x4 − 4x3 − 12x2 + 5 is

(a) strictly increasing

(b) strictly decreasing


Show that the function `f(x) = x^3 - 3x^2 + 6x - 100` is increasing on R


The function f (x) = x3 – 3x2 + 3x – 100, x∈ R is _______.

(A) increasing

(B) decreasing

(C) increasing and decreasing

(D) neither increasing nor decreasing


Find the intervals in which the function f given by f(x) = 2x2 − 3x is

  1. strictly increasing
  2. strictly decreasing

Find the values of x for  `y = [x(x - 2)]^2` is an increasing function.


Find the intervals in which the function f given by `f(x) = (4sin x - 2x - x cos x)/(2 + cos x)` is (i) increasing (ii) decreasing.


Without using the derivative show that the function f (x) = 7x − 3 is strictly increasing function on R ?


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 15x2 + 36x + 1 ?


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 9x2 + 12x − 5 ?


Find the interval in which the following function are increasing or decreasing  f(x) = 2x3 − 24x + 107  ?


Find the interval in which the following function are increasing or decreasing f(x) = x3 − 12x2 + 36x + 17 ?


Show that f(x) = e1/x, x ≠ 0 is a decreasing function for all x ≠ 0 ?


Show that f(x) = x3 − 15x2 + 75x − 50 is an increasing function for all x ∈ R ?


Show that f(x) = x2 − x sin x is an increasing function on (0, π/2) ?


Find the interval in which f(x) is increasing or decreasing f(x) = sinx + |sin x|, 0 < x \[\leq 2\pi\] ?


Find the interval in which f(x) is increasing or decreasing f(x) = sinx(1 + cosx), 0 < x < \[\frac{\pi}{2}\] ?


Find the set of values of 'b' for which f(x) = b (x + cos x) + 4 is decreasing on R ?


The interval of increase of the function f(x) = x − ex + tan (2π/7) is


The function f(x) = xx decreases on the interval


The function f(x) = x2 e−x is monotonic increasing when


The function \[f\left( x \right) = \frac{\lambda \sin x + 2 \cos x}{\sin x + \cos x}\] is increasing, if

 


Function f(x) = ax is increasing on R, if


Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).


The total cost of manufacturing x articles is C = 47x + 300x2 − x4.  Find x, for which average cost is increasing.


Show that function f(x) =`3/"x" + 10`, x ≠ 0 is decreasing.


Find the values of x for which the function f(x) = 2x3 – 6x2 + 6x + 24 is strictly increasing


Choose the correct alternative:

The function f(x) = x3 – 3x2 + 3x – 100, x ∈ R is


A man of height 1.9 m walks directly away from a lamp of height 4.75m on a level road at 6m/s. The rate at which the length of his shadow is increasing is


The function f(x) = 9 - x5 - x7 is decreasing for


If f(x) = [x], where [x] is the greatest integer not greater than x, then f'(1') = ______.


The function f(x) = sin x + 2x is ______ 


Determine for which values of x, the function y = `x^4 – (4x^3)/3` is increasing and for which values, it is decreasing.


In case of decreasing functions, slope of tangent and hence derivative is ____________.


`"f"("x") = (("e"^(2"x") - 1)/("e"^(2"x") + 1))` is ____________.


The function f: N → N, where

f(n) = `{{:(1/2(n + 1), "If n is sold"),(1/2n, "if n is even"):}` is


Show that function f(x) = tan x is increasing in `(0, π/2)`.


Let 'a' be a real number such that the function f(x) = ax2 + 6x – 15, x ∈ R is increasing in `(-∞, 3/4)` and decreasing in `(3/4, ∞)`. Then the function g(x) = ax2 – 6x + 15, x∈R has a ______.


Function f(x) = x100 + sinx – 1 is increasing for all x ∈ ______.


The interval in which the function f(x) = `(4x^2 + 1)/x` is decreasing is ______.


If f(x) = `x/(x^2 + 1)` is increasing function then the value of x lies in ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×