English

Determine for which values of x, the function y = x4–4x33 is increasing and for which values, it is decreasing. - Mathematics

Advertisements
Advertisements

Question

Determine for which values of x, the function y = `x^4 – (4x^3)/3` is increasing and for which values, it is decreasing.

Sum

Solution

y = `x^4 – (4x^3)/3`

⇒ `"dy"/"dx"` = 4x3 – 4x2

= 4x2(x – 1)

Now, `"dy"/"dx"` = 0

⇒ x = 0, x = 1.

Since f′(x) < 0 ∀ ∈x `(- oo, 0)` ∪ (0, 1) and f is continuous in `(- oo, 0]` and [0, 1].

Therefore f is decreasing in `(- oo, 1]` and f is increasing in `[1, oo)`.

Note: Here f is strictly decreasing in `(- oo, 0)` ∪ (0, 1) and is strictly increasing in `(1, oo)`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Application Of Derivatives - Solved Examples [Page 121]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 6 Application Of Derivatives
Solved Examples | Q 5 | Page 121

RELATED QUESTIONS

The side of an equilateral triangle is increasing at the rate of 2 cm/s. At what rate is its area increasing when the side of the triangle is 20 cm ?


Find the value(s) of x for which y = [x(x − 2)]2 is an increasing function.


Find the value of c in Rolle's theorem for the function `f(x) = x^3 - 3x " in " (-sqrt3, 0)`


The function f (x) = x3 – 3x2 + 3x – 100, x∈ R is _______.

(A) increasing

(B) decreasing

(C) increasing and decreasing

(D) neither increasing nor decreasing


Water is dripping out from a conical funnel of semi-verticle angle `pi/4` at the uniform rate of `2 cm^2/sec`in the surface, through a tiny hole at the vertex of the bottom. When the slant height of the water level is 4 cm, find the rate of decrease of the slant height of the water.


Find the interval in which the following function are increasing or decreasing f(x) = 10 − 6x − 2x2  ?


Find the interval in which the following function are increasing or decreasing  f(x) = 6 − 9x − x2  ?


Show that f(x) = cos2 x is a decreasing function on (0, π/2) ?


Show that f(x) = tan x is an increasing function on (−π/2, π/2) ?


Prove that the function f given by f(x) = x − [x] is increasing in (0, 1) ?


If g (x) is a decreasing function on R and f(x) = tan−1 [g (x)]. State whether f(x) is increasing or decreasing on R ?


State whether f(x) = tan x − x is increasing or decreasing its domain ?


The function f(x) = x2 e−x is monotonic increasing when


f(x) = 2x − tan−1 x − log \[\left\{ x + \sqrt{x^2 + 1} \right\}\] is monotonically increasing when

 


Function f(x) = loga x is increasing on R, if


If x = cos2 θ and y = cot θ then find `dy/dx  at  θ=pi/4` 


Find `dy/dx,if e^x+e^y=e^(x-y)`


The edge of a cube is decreasing at the rate of`( 0.6"cm")/sec`. Find the rate at which its volume is decreasing, when the edge of the cube is 2 cm.


Test whether the following functions are increasing or decreasing : f(x) = 2 – 3x + 3x2 – x3, x ∈ R.


Find the values of x for which the following functions are strictly decreasing:

f(x) = 2x3 – 3x2 – 12x + 6


Find the values of x for which the following functions are strictly decreasing : f(x) = x3 – 9x2 + 24x + 12


Find the value of x, such that f(x) is increasing function.

f(x) = 2x3 - 15x2 + 36x + 1 


Choose the correct alternative:

The function f(x) = x3 – 3x2 + 3x – 100, x ∈ R is


State whether the following statement is True or False: 

If the function f(x) = x2 + 2x – 5 is an increasing function, then x < – 1


Find the values of x such that f(x) = 2x3 – 15x2 + 36x + 1 is increasing function


Show that the function f(x) = `(x - 2)/(x + 1)`, x ≠ – 1 is increasing


For every value of x, the function f(x) = `1/7^x` is ______ 


Let f be a real valued function defined on (0, 1) ∪ (2, 4) such that f '(x) = 0 for every x, then ____________.


The function f(x) = x2 – 2x is increasing in the interval ____________.


Show that function f(x) = tan x is increasing in `(0, π/2)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×