Advertisements
Advertisements
Question
Find the value of c in Rolle's theorem for the function `f(x) = x^3 - 3x " in " (-sqrt3, 0)`
Solution 1
`f(x) = x^2 - 3x`
i) `f(-sqrt3) = (-sqrt3)^3 - 3(-sqrt3) = -3sqrt3 + 3sqrt3 = 0`
f(0) = 0
Also f(x) = continuos in `[-sqrt3, 0]` and differentiable in `(-sqrt3,0)`
f'(c) = 0
`=> 3x^2 - 3 = 0`
`:. 3c^2 - 3 = 0`
`c^2 = 1`
c = ±1
⇒ c = -1
Solution 2
The given function is f(x) = x3 – 3x.
Since a polynomial function is everywhere continous and differentiable, therefore f(x) is continous on [`-sqrt3`, 0] and differentaible on (`-sqrt3`,0)
Also `f(-sqrt3) = (-sqrt3)^3 - 3(-sqrt3) = -3sqrt3 + 3sqrt3 = 0`
f(0) = (0)3 – 3 × 0 = 0
Since all the three conditions of Rolle’s theorem are satisfied, so there exists a point c ∈ (`-sqrt3,0`) such that f'(c) = 0
f(x) = x3 − 3x
f'(x) = 3x2 − 3
∴ f'(c) = 0
⇒3c2 − 3 = 0
⇒c2 − 1 = 0
⇒ (c + 1)(c − 1) = 0
⇒ c = −1 or c = 1
Now, `c != 1` [∵ 1 ∉ (`-sqrt3,0`)]
∴ c = -1, where c ∈ (`-sqrt3,0`)
Thus, the required value of c is –1.
RELATED QUESTIONS
Show that the function `f(x) = x^3 - 3x^2 + 6x - 100` is increasing on R
Show that the function given by f(x) = 3x + 17 is strictly increasing on R.
Find the intervals in which the function f given by `f(x) = x^3 + 1/x^3 x != 0`, is (i) increasing (ii) decreasing.
Prove that the function f(x) = loga x is increasing on (0, ∞) if a > 1 and decreasing on (0, ∞), if 0 < a < 1 ?
Find the interval in which the following function are increasing or decreasing f(x) = 6 + 12x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x ?
Determine the values of x for which the function f(x) = x2 − 6x + 9 is increasing or decreasing. Also, find the coordinates of the point on the curve y = x2 − 6x + 9 where the normal is parallel to the line y = x + 5 ?
Show that f(x) = loga x, 0 < a < 1 is a decreasing function for all x > 0 ?
Show that f(x) = log sin x is increasing on (0, π/2) and decreasing on (π/2, π) ?
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π) ?
Show that f(x) = tan−1 (sin x + cos x) is a decreasing function on the interval (π/4, π/2) ?
Show that the function f(x) = sin (2x + π/4) is decreasing on (3π/8, 5π/8) ?
Prove that the function f given by f(x) = log cos x is strictly increasing on (−π/2, 0) and strictly decreasing on (0, π/2) ?
What are the values of 'a' for which f(x) = ax is increasing on R ?
Write the set of values of 'a' for which f(x) = loga x is increasing in its domain ?
Write the set of values of a for which the function f(x) = ax + b is decreasing for all x ∈ R ?
Find the intervals in which the function \[f(x) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] is
(a) strictly increasing
(b) strictly decreasing
Find `dy/dx,if e^x+e^y=e^(x-y)`
For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the value of x for which Total cost is decreasing.
Test whether the following functions are increasing or decreasing : f(x) = 2 – 3x + 3x2 – x3, x ∈ R.
Show that y = `log (1 + x) – (2x)/(2 + x), x > - 1` is an increasing function on its domain.
Test whether the following function f(x) = 2 – 3x + 3x2 – x3, x ∈ R is increasing or decreasing
If f(x) = `x^(3/2) (3x - 10)`, x ≥ 0, then f(x) is increasing in ______.
Determine for which values of x, the function y = `x^4 – (4x^3)/3` is increasing and for which values, it is decreasing.
The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.
The function f (x) = 2 – 3 x is ____________.
The function f(x) = tan-1 x is ____________.
Let f (x) = tan x – 4x, then in the interval `[- pi/3, pi/3], "f"("x")` is ____________.
The function f(x) = sin4x + cos4x is an increasing function if ______.