Advertisements
Advertisements
Question
Find the interval in which the following function are increasing or decreasing f(x) = 6 + 12x + 3x2 − 2x3 ?
Solution
\[\text { When } \left( x - a \right)\left( x - b \right)>0 \text { with }a < b, x < a \text { or }x>b.\]
\[\text { When } \left( x - a \right)\left( x - b \right)<0 \text { with } a < b, a < x < b .\]
\[f\left( x \right) = 6 + 12x + 3 x^2 - 2 x^3 \]
\[f'\left( x \right) = 12 + 6x - 6 x^2 \]
\[ = - 6 \left( x^2 - x - 2 \right)\]
\[ = - 6 \left( x - 2 \right)\left( x + 1 \right)\]
\[\text { For }f(x) \text { to be increasing, we must have }\]
\[f'\left( x \right) > 0\]
\[ \Rightarrow - 6 \left( x - 2 \right)\left( x + 1 \right) > 0\]
\[ \Rightarrow \left( x - 2 \right)\left( x + 1 \right) < 0 \left[ \text { Since } - 6 < 0, - 6 \left( x - 2 \right)\left( x + 1 \right) > 0 \Rightarrow \left( x - 2 \right)\left( x + 1 \right) < 0 \right]\]
\[ \Rightarrow - 1 < x < 2 \]
\[ \Rightarrow x \in \left( - 1, 2 \right)\]
\[\text { So },f(x)\text { is increasing on} \left( - 1, 2 \right) . \]
\[\text { For }f(x) \text { to be decreasing, we must have }\]
\[f'\left( x \right) < 0\]
\[ \Rightarrow - 6 \left( x - 2 \right)\left( x + 1 \right) < 0\]
\[ \Rightarrow \left( x - 2 \right)\left( x + 1 \right) > 0 \left[ \text { Since } - 6 < 0, - 6 \left( x - 2 \right)\left( x + 1 \right) < 0 \Rightarrow \left( x - 2 \right)\left( x + 1 \right) > 0 \right]\]
\[ \Rightarrow x <\text{ - 1 or x} > 2 \]
\[ \Rightarrow x \in \left( - \infty , - 1 \right) \cup \left( 2, \infty \right)\]
\[\text { So },f(x)\text { is decreasing on }\left( - \infty , - 1 \right) \cup \left( 2, \infty \right) .\]
APPEARS IN
RELATED QUESTIONS
Find the intervals in which the function f(x) = 3x4 − 4x3 − 12x2 + 5 is
(a) strictly increasing
(b) strictly decreasing
The amount of pollution content added in air in a city due to x-diesel vehicles is given by P(x) = 0.005x3 + 0.02x2 + 30x. Find the marginal increase in pollution content when 3 diesel vehicles are added and write which value is indicated in the above question.
Find the intervals in which the function f given by f(x) = 2x3 − 3x2 − 36x + 7 is
- Strictly increasing
- Strictly decreasing
Find the intervals in which the following functions are strictly increasing or decreasing:
6 − 9x − x2
Prove that the function f given by f(x) = log sin x is strictly increasing on `(0, pi/2)` and strictly decreasing on `(pi/2, pi)`
Show that the function f(x) = 4x3 - 18x2 + 27x - 7 is always increasing on R.
Without using the derivative, show that the function f (x) = | x | is.
(a) strictly increasing in (0, ∞)
(b) strictly decreasing in (−∞, 0) .
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 15x2 + 36x + 1 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 24x + 7 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = 3 x^4 - 4 x^3 - 12 x^2 + 5\] ?
Determine the values of x for which the function f(x) = x2 − 6x + 9 is increasing or decreasing. Also, find the coordinates of the point on the curve y = x2 − 6x + 9 where the normal is parallel to the line y = x + 5 ?
Show that f(x) = loga x, 0 < a < 1 is a decreasing function for all x > 0 ?
Show that f(x) = x − sin x is increasing for all x ∈ R ?
Let f defined on [0, 1] be twice differentiable such that | f (x) | ≤ 1 for all x ∈ [0, 1]. If f(0) = f(1), then show that | f'(x) | < 1 for all x ∈ [ 0, 1] ?
Find the set of values of 'b' for which f(x) = b (x + cos x) + 4 is decreasing on R ?
The function f(x) = xx decreases on the interval
The function f(x) = x2 e−x is monotonic increasing when
Function f(x) = cos x − 2 λ x is monotonic decreasing when
Every invertible function is
If the function f(x) = x2 − kx + 5 is increasing on [2, 4], then
If the function f(x) = x3 − 9kx2 + 27x + 30 is increasing on R, then
Find `dy/dx,if e^x+e^y=e^(x-y)`
Find the values of x for which the following functions are strictly decreasing : f(x) = `x + (25)/x`
Find the values of x for which the following functions are strictly decreasing : f(x) = x3 – 9x2 + 24x + 12
Test whether the following function is increasing or decreasing.
f(x) = `7/"x" - 3`, x ∈ R, x ≠ 0
Find the value of x such that f(x) is decreasing function.
f(x) = x4 − 2x3 + 1
Find the values of x for which the function f(x) = 2x3 – 6x2 + 6x + 24 is strictly increasing
Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing
Find the values of x for which f(x) = 2x3 – 15x2 – 144x – 7 is
(a) Strictly increasing
(b) strictly decreasing
The function f(x) = 9 - x5 - x7 is decreasing for
f(x) = `{{:(0"," x = 0 ), (x - 3"," x > 0):}` The function f(x) is ______
For which interval the given function f(x) = 2x3 – 9x2 + 12x + 7 is increasing?
The values of k for which the function f(x) = kx3 – 6x2 + 12x + 11 may be increasing on R are ______.
If f(x) = `x^(3/2) (3x - 10)`, x ≥ 0, then f(x) is increasing in ______.
The function which is neither decreasing nor increasing in `(pi/2,(3pi)/2)` is ____________.
The length of the longest interval, in which the function `3 "sin x" - 4 "sin"^3"x"` is increasing, is ____________.
State whether the following statement is true or false.
If f'(x) > 0 for all x ∈ (a, b) then f(x) is decreasing function in the interval (a, b).
If f(x) = `x/(x^2 + 1)` is increasing function then the value of x lies in ______.