Advertisements
Advertisements
Question
The function f(x) = xx decreases on the interval
Options
(0, e)
(0, 1)
(0, 1/e)
none of these
Solution
(0, 1/e)
\[\text { Given }: \hspace{0.167em} f\left( x \right) = x^x \]
\[\text { Applying log with base e on both sides, we get }\]
\[\log \left( f\left( x \right) \right) = x \log_e x\]
\[\frac{f'\left( x \right)}{f\left( x \right)} = 1 + \log_e x\]
\[f'\left( x \right) = f\left( x \right)\left( 1 + \log_e x \right) = x^x \left( 1 + \log_e x \right)\]
\[\text { For f(x) to be decreasing, we must have }\]
\[f'\left( x \right) < 0\]
\[ \Rightarrow x^x \left( 1 + \log_e x \right) < 0\]
\[\text { Here, logaritmic function is defined for positive values of x } . \]
\[ \Rightarrow x^x > 0\]
\[ \Rightarrow 1 + \log_e x < 0 \left[ \text { Since } x^x > 0, x^x \left( 1 + \log_e x \right) < 0 \Rightarrow 1 + \log_e x < 0 \right] \]
\[ \Rightarrow \log_e x < - 1\]
\[ \Rightarrow x < e^{- 1} \left[ \because l {og}_a x < N \Rightarrow x < a^N \text { for }a > 1 \right]\]
\[\text { Here }, \]
\[e > 1\]
\[ \Rightarrow \log_e x < - 1 \Rightarrow x < e^{- 1} \]
\[ \Rightarrow x \in \left( 0, e^{- 1} \right)\]
\[\text { So,f(x) is decreasing on }\left( 0, \frac{1}{e} \right).\]
APPEARS IN
RELATED QUESTIONS
Find the intervals in which the function f(x) = 3x4 − 4x3 − 12x2 + 5 is
(a) strictly increasing
(b) strictly decreasing
Show that the function `f(x) = x^3 - 3x^2 + 6x - 100` is increasing on R
The function f (x) = x3 – 3x2 + 3x – 100, x∈ R is _______.
(A) increasing
(B) decreasing
(C) increasing and decreasing
(D) neither increasing nor decreasing
Show that the function given by f(x) = sin x is
- strictly increasing in `(0, pi/2)`
- strictly decreasing in `(pi/2, pi)`
- neither increasing nor decreasing in (0, π)
Find the intervals in which the following functions are strictly increasing or decreasing:
6 − 9x − x2
Prove that the function f given by f(x) = log sin x is strictly increasing on `(0, pi/2)` and strictly decreasing on `(pi/2, pi)`
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 9x2 + 12x − 5 ?
State when a function f(x) is said to be increasing on an interval [a, b]. Test whether the function f(x) = x2 − 6x + 3 is increasing on the interval [4, 6] ?
Determine whether f(x) = −x/2 + sin x is increasing or decreasing on (−π/3, π/3) ?
Show that the function f given by f(x) = 10x is increasing for all x ?
Prove that the function f given by f(x) = log cos x is strictly increasing on (−π/2, 0) and strictly decreasing on (0, π/2) ?
Show that f(x) = x + cos x − a is an increasing function on R for all values of a ?
If g (x) is a decreasing function on R and f(x) = tan−1 [g (x)]. State whether f(x) is increasing or decreasing on R ?
Write the interval in which f(x) = sin x + cos x, x ∈ [0, π/2] is increasing ?
Let f(x) = x3 + ax2 + bx + 5 sin2x be an increasing function on the set R. Then, a and b satisfy.
Every invertible function is
Let ϕ(x) = f(x) + f(2a − x) and f"(x) > 0 for all x ∈ [0, a]. Then, ϕ (x)
The function f(x) = −x/2 + sin x defined on [−π/3, π/3] is
If x = cos2 θ and y = cot θ then find `dy/dx at θ=pi/4`
The edge of a cube is decreasing at the rate of`( 0.6"cm")/sec`. Find the rate at which its volume is decreasing, when the edge of the cube is 2 cm.
Solve the following:
Find the intervals on which the function f(x) = `x/logx` is increasing and decreasing.
Prove that function f(x) = `x - 1/x`, x ∈ R and x ≠ 0 is increasing function
Find the values of x for which the function f(x) = 2x3 – 6x2 + 6x + 24 is strictly increasing
Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing
Choose the correct alternative:
The function f(x) = x3 – 3x2 + 3x – 100, x ∈ R is
State whether the following statement is True or False:
If the function f(x) = x2 + 2x – 5 is an increasing function, then x < – 1
Show that f(x) = 2x + cot–1x + `log(sqrt(1 + x^2) - x)` is increasing in R
The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.
Which of the following functions is decreasing on `(0, pi/2)`?
The function f(x) = x3 + 6x2 + (9 + 2k)x + 1 is strictly increasing for all x, if ____________.
Let h(x) = f(x) - [f(x)]2 + [f(x)]3 for every real number x. Then ____________.
Which of the following graph represent the strictly increasing function.
The interval in which `y = x^2e^(-x)` is increasing with respect to `x` is
Find the value of x for which the function f(x)= 2x3 – 9x2 + 12x + 2 is decreasing.
Given f(x) = 2x3 – 9x2 + 12x + 2
∴ f'(x) = `squarex^2 - square + square`
∴ f'(x) = `6(x - 1)(square)`
Now f'(x) < 0
∴ 6(x – 1)(x – 2) < 0
Since ab < 0 ⇔a < 0 and b < 0 or a > 0 and b < 0
Case 1: (x – 1) < 0 and (x – 2) < 0
∴ x < `square` and x > `square`
Which is contradiction
Case 2: x – 1 and x – 2 < 0
∴ x > `square` and x < `square`
1 < `square` < 2
f(x) is decreasing if and only if x ∈ `square`
If f(x) = x3 + 4x2 + λx + 1(λ ∈ R) is a monotonically decreasing function of x in the largest possible interval `(–2, (–2)/3)` then ______.
Let f(x) = `x/sqrt(a^2 + x^2) - (d - x)/sqrt(b^2 + (d - x)^2), x ∈ R` where a, b and d are non-zero real constants. Then ______.
A function f is said to be increasing at a point c if ______.