English

Find the intervals in which the function f(x) = 3x4 − 4x3 − 12x2 + 5 is - Mathematics

Advertisements
Advertisements

Question

Find the intervals in which the function f(x) = 3x4 − 4x3 − 12x2 + 5 is

(a) strictly increasing

(b) strictly decreasing

Solution

We have:

`f(x) = 3x^4 − 4x^3 −12x^2 + 5`

`Now, f'(x) = 12x^3 − 12x^2 − 24x`

`Now, f'(x) = 0`

`⇒12x^3 −12x^2−24x = 0`

`⇒12x(x^2−x−2) = 0`

`⇒12x(x^2−2x+x−2)=0`

`⇒12x[x(x−2)+1(x−2)] = 0`

`⇒12x (x+1)(x−2)=0`

`⇒x=0 ; x = −1; x = 2`

So, the points x = −1, x = 0 and x = 2 divide the real line into four disjoint intervals, namely (,1), (1,0), (0,2) and (2,).

 INTERVAL SIGN OF f ' (x)=12x (x+1)(x −2)  NATURE OF FUNCTION
(,1) ()()()=or<0 Strictly decreasing
(1,0) ()(+)()=+or>0 Strictly increasing
(0,2) (+)(+)() =  or<0 Strictly decreasing
(2,) (+)(+)(+) = + or >0 Strictly increasing


(a) The given function is strictly increasing in the intervals (1,0)  (2,).
(b) The given function is strictly decreasing in the intervals (,1)  (0,2).

shaalaa.com
  Is there an error in this question or solution?
2013-2014 (March) Delhi Set 1

RELATED QUESTIONS

Find the intervals in which the following functions are strictly increasing or decreasing:

6 − 9x − x2


Show that y = `log(1+x) - (2x)/(2+x), x> -  1`, is an increasing function of x throughout its domain.


Without using the derivative show that the function f (x) = 7x − 3 is strictly increasing function on R ?


Find the interval in which the following function are increasing or decreasing f(x) = 10 − 6x − 2x2  ?


Find the interval in which the following function are increasing or decreasing f(x) = 5 + 36x + 3x2 − 2x?


Show that f(x) = x9 + 4x7 + 11 is an increasing function for all x ∈ R ? 


Show that f(x) = sin x − cos x is an increasing function on (−π/4, π/4) ?


Prove that the function f given by f(x) = x − [x] is increasing in (0, 1) ?


Prove that the function f(x) = cos x is:
(i) strictly decreasing in (0, π)
(ii) strictly increasing in (π, 2π)
(iii) neither increasing nor decreasing in (0, 2π).


Find the values of b for which the function f(x) = sin x − bx + c is a decreasing function on R ?


Write the set of values of 'a' for which f(x) = loga x is increasing in its domain ?


The function f(x) = xx decreases on the interval


Let \[f\left( x \right) = \tan^{- 1} \left( g\left( x \right) \right),\],where g (x) is monotonically increasing for 0 < x < \[\frac{\pi}{2} .\] Then, f(x) is


Function f(x) = cos x − 2 λ x is monotonic decreasing when


Let ϕ(x) = f(x) + f(2a − x) and f"(x) > 0 for all x ∈ [0, a]. Then, ϕ (x)


 Prove that the function `f(x) = x^3- 6x^2 + 12x+5` is increasing on R. 


For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the value of x for which Total cost is decreasing.


Find the values of x for which f(x) = `x/(x^2 + 1)` is (a) strictly increasing (b) decreasing.


Choose the correct option from the given alternatives :

Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly decreasing in ______.


Solve the following : Find the intervals on which the function y = xx, (x > 0) is increasing and decreasing.


Choose the correct alternative.

The function f(x) = x3 - 3x2 + 3x - 100, x ∈ R is


The function f(x) = 9 - x5 - x7 is decreasing for


For every value of x, the function f(x) = `1/"a"^x`, a > 0 is ______.


If f(x) = `x^(3/2) (3x - 10)`, x ≥ 0, then f(x) is increasing in ______.


Show that f(x) = tan–1(sinx + cosx) is an increasing function in `(0, pi/4)`


Let f be a real valued function defined on (0, 1) ∪ (2, 4) such that f '(x) = 0 for every x, then ____________.


The function f (x) = x2, for all real x, is ____________.


The function f(x) = tan-1 (sin x + cos x) is an increasing function in:


The function `"f"("x") = "log" (1 + "x") - (2"x")/(2 + "x")` is increasing on ____________.


The function f(x) = sin4x + cos4x is an increasing function if ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×