English

Show that F(X) = X9 + 4x7 + 11 is an Increasing Function for All X ∈ R ? - Mathematics

Advertisements
Advertisements

Question

Show that f(x) = x9 + 4x7 + 11 is an increasing function for all x ∈ R ? 

Sum

Solution

\[f\left( x \right) = x^9 + 4 x^7 + 11\]

\[f'\left( x \right) = 9 x^8 + 28 x^6 \geq 0, \forall x \in R \left[ \because x^8 {, x}^6 \geq0, \text { for } \forall x \in R \right]\]

\[\text {So, f(x) is increasing on R } .\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 17: Increasing and Decreasing Functions - Exercise 17.2 [Page 34]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 17 Increasing and Decreasing Functions
Exercise 17.2 | Q 20 | Page 34

RELATED QUESTIONS

Test whether the function is increasing or decreasing. 

f(x) = `"x" -1/"x"`, x ∈ R, x ≠ 0, 


Find the intervals in which the function f given by `f(x) = x^3 + 1/x^3 x != 0`, is (i) increasing (ii) decreasing.


Let f be a function defined on [a, b] such that f '(x) > 0, for all x ∈ (a, b). Then prove that f is an increasing function on (a, b).


Water is dripping out from a conical funnel of semi-verticle angle `pi/4` at the uniform rate of `2 cm^2/sec`in the surface, through a tiny hole at the vertex of the bottom. When the slant height of the water level is 4 cm, find the rate of decrease of the slant height of the water.


Prove that the function f(x) = loga x is increasing on (0, ∞) if a > 1 and decreasing on (0, ∞), if 0 < a < 1 ?


Prove that f(x) = ax + b, where a, b are constants and a < 0 is a decreasing function on R ?


Without using the derivative, show that the function f (x) = | x | is.
(a) strictly increasing in (0, ∞)
(b) strictly decreasing in (−∞, 0) .


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 15x2 + 36x + 1 ?


Prove that the function f given by f(x) = x − [x] is increasing in (0, 1) ?


Prove that the following function is increasing on R f \[f\left( x \right) = 4 x^3 - 18 x^2 + 27x - 27\] ?


Find the values of b for which the function f(x) = sin x − bx + c is a decreasing function on R ?


What are the values of 'a' for which f(x) = ax is increasing on R ?


Write the set of values of 'a' for which f(x) = loga x is decreasing in its domain ?


Find the set of values of 'a' for which f(x) = x + cos x + ax + b is increasing on R ?


Write the set of values of k for which f(x) = kx − sin x is increasing on R ?


The function \[f\left( x \right) = \log_e \left( x^3 + \sqrt{x^6 + 1} \right)\] is of the following types:


The function \[f\left( x \right) = \frac{x}{1 + \left| x \right|}\] is 

 


If the function f(x) = x2 − kx + 5 is increasing on [2, 4], then


The radius r of a right circular cylinder is increasing uniformly at the rate of 0·3 cm/s and its height h is decreasing at the rate of 0·4 cm/s. When r = 3·5 cm and h = 7 cm, find the rate of change of the curved surface area of the cylinder. \[\left[ \text{ Use } \pi = \frac{22}{7} \right]\]


Using truth table show that ∼ (p → ∼ q) ≡ p ∧ q 


Test whether the following functions are increasing or decreasing : f(x) = 2 – 3x + 3x2 – x3, x ∈ R.


Find the value of x, such that f(x) is increasing function.

f(x) = x2 + 2x - 5 


Find the value of x, such that f(x) is decreasing function.

f(x) = 2x3 - 15x2 - 144x - 7 


Show that function f(x) =`("x - 2")/("x + 1")`, x ≠ -1 is increasing.


Show that f(x) = x – cos x is increasing for all x.


Test whether the function f(x) = x3 + 6x2 + 12x − 5 is increasing or decreasing for all x ∈ R


If the function f(x) = `7/x - 3`, x ∈ R, x ≠ 0 is a decreasing function, then x ∈ ______


The area of the square increases at the rate of 0.5 cm2/sec. The rate at which its perimeter is increasing when the side of the square is 10 cm long is ______.


Given P(x) = x4 + ax3 + bx2 + cx + d such that x = 0 is the only real root of P'(x) = 0. If P(-1) < P(1), then in the interval [-1, 1] ______


Show that for a ≥ 1, f(x) = `sqrt(3)` sinx – cosx – 2ax + b ∈ is decreasing in R


Show that f(x) = tan–1(sinx + cosx) is an increasing function in `(0, pi/4)`


The values of a for which the function f(x) = sinx – ax + b increases on R are ______.


The function f (x) = x2, for all real x, is ____________.


2x3 - 6x + 5 is an increasing function, if ____________.


The function f(x) = x3 + 6x2 + (9 + 2k)x + 1 is strictly increasing for all x, if ____________.


Let f(x) = tan–1`phi`(x), where `phi`(x) is monotonically increasing for `0 < x < π/2`. Then f(x) is ______.


Let f : R `rightarrow` R be a positive increasing function with `lim_(x rightarrow ∞) (f(3x))/(f(x))` = 1 then `lim_(x rightarrow ∞) (f(2x))/(f(x))` = ______.


The function f(x) = x3 + 3x is increasing in interval ______.


Find the interval in which the function f(x) = x2e–x is strictly increasing or decreasing.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×