Advertisements
Advertisements
Question
Find the value of x, such that f(x) is decreasing function.
f(x) = 2x3 - 15x2 - 144x - 7
Solution
f(x) = 2x3 - 15x2 - 144x - 7
∴ f'(x) = 6x2 - 30x - 144
f(x) is an decreasing function, if f'(x) < 0
∴ 6(x2 - 5x - 24) < 0
∴ 6(x + 3)(x - 8) < 0
∴ (x + 3)(x - 8) < 0
ab < 0 ⇔ a > 0 and b < 0 or a < 0 or b > 0
∴ Either (x + 3) > 0 and (x – 8) < 0 or
(x + 3) < 0 and (x – 8) > 0
Case 1: x + 3 > 0 and x - 8 < 0
∴ x > -3 and x < 8
Case 2: x + 3 < 0 and x - 8 > 0
∴ x < - 3 or x > 8, which is not possible.
Thus, f(x) is an decreasing function for -3 < x < 8 i.e., (-3, 8).
APPEARS IN
RELATED QUESTIONS
Show that the function given by f(x) = 3x + 17 is strictly increasing on R.
Find the intervals in which the following functions are strictly increasing or decreasing:
−2x3 − 9x2 − 12x + 1
On which of the following intervals is the function f given byf(x) = x100 + sin x –1 strictly decreasing?
Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.
Find the intervals in which the function f given by `f(x) = (4sin x - 2x - x cos x)/(2 + cos x)` is (i) increasing (ii) decreasing.
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 12x2 + 18x + 15 ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 − 36x + 2 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 + 9x2 + 12x + 20 ?
Find the interval in which the following function are increasing or decreasing f(x) = −2x3 − 9x2 − 12x + 1 ?
Find the interval in which the following function are increasing or decreasing f(x) = x8 + 6x2 ?
Show that f(x) = x3 − 15x2 + 75x − 50 is an increasing function for all x ∈ R ?
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π) ?
Prove that the function f(x) = x3 − 6x2 + 12x − 18 is increasing on R ?
Show that f(x) = sin x − cos x is an increasing function on (−π/4, π/4) ?
Find the intervals in which f(x) = (x + 2) e−x is increasing or decreasing ?
Prove that the function f(x) = cos x is:
(i) strictly decreasing in (0, π)
(ii) strictly increasing in (π, 2π)
(iii) neither increasing nor decreasing in (0, 2π).
Write the set of values of a for which f(x) = cos x + a2 x + b is strictly increasing on R ?
If the function f(x) = kx3 − 9x2 + 9x + 3 is monotonically increasing in every interval, then
The price P for demand D is given as P = 183 + 120 D – 3D2.
Find D for which the price is increasing.
Find the values of x for which the following functions are strictly increasing:
f(x) = 3 + 3x – 3x2 + x3
Find the values of x for which the following functions are strictly decreasing : f(x) = x3 – 9x2 + 24x + 12
Find the values of x for which f(x) = `x/(x^2 + 1)` is (a) strictly increasing (b) decreasing.
Show that f(x) = x – cos x is increasing for all x.
Find the values of x for which the function f(x) = 2x3 – 6x2 + 6x + 24 is strictly increasing
If the function f(x) = `7/x - 3`, x ∈ R, x ≠ 0 is a decreasing function, then x ∈ ______
State whether the following statement is True or False:
The function f(x) = `3/x` + 10, x ≠ 0 is decreasing
The function f(x) = `x - 1/x`, x ∈ R, x ≠ 0 is increasing
For which interval the given function f(x) = 2x3 – 9x2 + 12x + 7 is increasing?
For every value of x, the function f(x) = `1/7^x` is ______
The values of k for which the function f(x) = kx3 – 6x2 + 12x + 11 may be increasing on R are ______.
Show that f(x) = tan–1(sinx + cosx) is an increasing function in `(0, pi/4)`
The function f: N → N, where
f(n) = `{{:(1/2(n + 1), "If n is sold"),(1/2n, "if n is even"):}` is
Show that function f(x) = tan x is increasing in `(0, π/2)`.
If f(x) = x3 + 4x2 + λx + 1(λ ∈ R) is a monotonically decreasing function of x in the largest possible interval `(–2, (–2)/3)` then ______.
If f(x) = x5 – 20x3 + 240x, then f(x) satisfies ______.
Function f(x) = `log(1 + x) - (2x)/(2 + x)` is monotonically increasing when ______.
Function f(x) = x100 + sinx – 1 is increasing for all x ∈ ______.
Let f(x) = `x/sqrt(a^2 + x^2) - (d - x)/sqrt(b^2 + (d - x)^2), x ∈ R` where a, b and d are non-zero real constants. Then ______.
The interval in which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.