English

Find the Intervals in Which F(X) = (X + 2) E−X is Increasing Or Decreasing ? - Mathematics

Advertisements
Advertisements

Question

Find the intervals in which f(x) = (x + 2) e−x is increasing or decreasing ?

Sum

Solution

\[f\left( x \right) = \left( x + 2 \right) e^{- x} \]

\[f'\left( x \right) = - e^{- x} \left( x + 2 \right) + e^{- x} \]

\[ = - x e^{- x} - 2 e^{- x} + e^{- x} \]

\[ = - x e^{- x} - e^{- x} \]

\[ = e^{- x} \left( - x - 1 \right)\]

\[\text { For f(x) to be increasing, we must have }\]

\[f'\left( x \right) > 0\]

\[ \Rightarrow e^{- x} \left( - x - 1 \right) > 0\]

\[ \Rightarrow - x - 1 > 0 \left[ \because e^{- x} > 0, \forall x \in R \right]\]

\[ \Rightarrow - x > 1\]

\[ \Rightarrow x < - 1\]

\[ \Rightarrow x \in \left( - \infty , - 1 \right)\]

\[\text { So, f(x) is increasing on} \left( - \infty , - 1 \right) . \]

\[\text { For f(x) to be decreasing, we must have }\]

\[f'\left( x \right) < 0\]

\[ \Rightarrow e^{- x} \left( - x - 1 \right) < 0\]

\[ \Rightarrow - x - 1 < 0 \left[ \because e^{- x} > 0, \forall x \in R \right]\]

\[ \Rightarrow - x < 1\]

\[ \Rightarrow x > - 1\]

\[ \Rightarrow x \in \left( - 1, \infty \right)\]

\[\text { So, f(x) is decreasing on }\left( - 1, \infty \right).\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 17: Increasing and Decreasing Functions - Exercise 17.2 [Page 35]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 17 Increasing and Decreasing Functions
Exercise 17.2 | Q 27 | Page 35

RELATED QUESTIONS

Find the intervals in which the following functions are strictly increasing or decreasing:

x2 + 2x − 5


Find the values of x for  `y = [x(x - 2)]^2` is an increasing function.


The interval in which y = x2 e–x is increasing is ______.


Find the interval in which the following function are increasing or decreasing f(x) = 8 + 36x + 3x2 − 2x?


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 9x2 + 12x − 5 ?


Find the interval in which the following function are increasing or decreasing f(x) = x8 + 6x2  ?


Show that f(x) = sin x is an increasing function on (−π/2, π/2) ?


Show that the function f(x) = sin (2x + π/4) is decreasing on (3π/8, 5π/8) ?


Show that the function x2 − x + 1 is neither increasing nor decreasing on (0, 1) ?


Find the value(s) of a for which f(x) = x3 − ax is an increasing function on R ?


Find the set of values of 'b' for which f(x) = b (x + cos x) + 4 is decreasing on R ?


Write the set of values of a for which the function f(x) = ax + b is decreasing for all x ∈ R ?


State whether f(x) = tan x − x is increasing or decreasing its domain ?


Every invertible function is


The function \[f\left( x \right) = \frac{\lambda \sin x + 2 \cos x}{\sin x + \cos x}\] is increasing, if

 


Function f(x) = loga x is increasing on R, if


Let ϕ(x) = f(x) + f(2a − x) and f"(x) > 0 for all x ∈ [0, a]. Then, ϕ (x)


Find the intervals in which the function \[f(x) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] is

(a) strictly increasing
(b) strictly decreasing


If x = cos2 θ and y = cot θ then find `dy/dx  at  θ=pi/4` 


Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).


The total cost of manufacturing x articles is C = 47x + 300x2 − x4.  Find x, for which average cost is increasing.


Find MPC ( Marginal propensity to Consume ) and APC ( Average Propensity to Consume ) if the expenditure Ec of a person with income I is given as Ec = ( 0.0003 ) I2 + ( 0.075 ) I when I = 1000.


Find the value of x, such that f(x) is increasing function.

f(x) = 2x3 - 15x2 + 36x + 1 


Find the value of x, such that f(x) is increasing function.

f(x) = x2 + 2x - 5 


Choose the correct alternative:

The function f(x) = x3 – 3x2 + 3x – 100, x ∈ R is


The slope of tangent at any point (a, b) is also called as ______.


If the function f(x) = `7/x - 3`, x ∈ R, x ≠ 0 is a decreasing function, then x ∈ ______


The total cost function for production of articles is given as C = 100 + 600x – 3x2, then the values of x for which the total cost is decreasing is  ______


State whether the following statement is True or False: 

The function f(x) = `3/x` + 10, x ≠ 0 is decreasing


The function f(x) = `x - 1/x`, x ∈ R, x ≠ 0 is increasing


By completing the following activity, find the values of x such that f(x) = 2x3 – 15x2 – 84x – 7 is decreasing function.

Solution: f(x) = 2x3 – 15x2 – 84x – 7

∴ f'(x) = `square`

∴ f'(x) = 6`(square) (square)`

Since f(x) is decreasing function.

∴ f'(x) < 0

Case 1: `(square)` > 0 and (x + 2) < 0

∴ x ∈ `square`

Case 2: `(square)` < 0 and (x + 2) > 0

∴ x ∈ `square`

∴ f(x) is decreasing function if and only if x ∈ `square`


The values of k for which the function f(x) = kx3 – 6x2 + 12x + 11 may be increasing on R are ______.


Prove that the function f(x) = tanx – 4x is strictly decreasing on `((-pi)/3, pi/3)`


Let the f : R → R be defined by f (x) = 2x + cosx, then f : ______.


y = x(x – 3)2 decreases for the values of x given by : ______.


Find the value of x for which the function f(x)= 2x3 – 9x2 + 12x + 2 is decreasing.

Given f(x) = 2x3 – 9x2 + 12x + 2

∴ f'(x) = `squarex^2 - square + square`

∴ f'(x) = `6(x - 1)(square)`

Now f'(x) < 0

∴ 6(x – 1)(x – 2) < 0

Since ab < 0 ⇔a < 0 and b < 0 or a > 0 and b < 0

Case 1: (x – 1) < 0 and (x – 2) < 0

∴ x < `square` and x > `square`

Which is contradiction

Case 2: x – 1 and x – 2 < 0

∴ x > `square` and x < `square`

1 < `square` < 2

f(x) is decreasing if and only if x ∈ `square`


Let f(x) = tan–1`phi`(x), where `phi`(x) is monotonically increasing for `0 < x < π/2`. Then f(x) is ______.


y = log x satisfies for x > 1, the inequality ______.


Find the interval/s in which the function f : R `rightarrow` R defined by f(x) = xex, is increasing.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×