English

Find the interval/s in which the function f : R → R defined by f(x) = xex, is increasing. - Mathematics

Advertisements
Advertisements

Question

Find the interval/s in which the function f : R `rightarrow` R defined by f(x) = xex, is increasing.

Sum

Solution

f(x) = xex `\implies` f'(x) = ex (x + 1)

When x ∈ [–1, ∞), (x + 1) ≥ 0 and ex > 0

`\implies` f'(x) ≥ 0

∴ f(x) increases in this interval.

or, we can write f(x) = xex `\implies` f'(x) = ex (x + 1)

For f(x) to be increasing, we have f'(x) = ex (x + 1) ≥ 0 `\implies` x ≥ –1 as ex > 0, ∀ x ∈ R

Hence, the required interval where f(x) increases is [–1, ∞).

shaalaa.com
  Is there an error in this question or solution?
2023-2024 (March) Board Sample Paper

RELATED QUESTIONS

Price P for demand D is given as P = 183 +120D - 3D2 Find D for which the price is increasing


Find the values of x for  `y = [x(x - 2)]^2` is an increasing function.


Prove that the logarithmic function is strictly increasing on (0, ∞).


Prove that the function f(x) = loga x is increasing on (0, ∞) if a > 1 and decreasing on (0, ∞), if 0 < a < 1 ?


Find the intervals in which f(x) = sin x − cos x, where 0 < x < 2π is increasing or decreasing ?


Show that f(x) = loga x, 0 < a < 1 is a decreasing function for all x > 0 ?


Show that f(x) = sin x is an increasing function on (−π/2, π/2) ?


What are the values of 'a' for which f(x) = ax is decreasing on R ? 


Write the interval in which f(x) = sin x + cos x, x ∈ [0, π/2] is increasing ?


The function f(x) = x9 + 3x7 + 64 is increasing on


The consumption expenditure Ec of a person with the income x. is given by Ec = 0.0006x2 + 0.003x. Find MPC, MPS, APC and APS when the income x = 200.


For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the value of x for which Total cost is decreasing.


Find MPC ( Marginal propensity to Consume ) and APC ( Average Propensity to Consume ) if the expenditure Ec of a person with income I is given as Ec = ( 0.0003 ) I2 + ( 0.075 ) I when I = 1000.


Prove that the function f : N → N, defined by f(x) = x2 + x + 1 is one-one but not onto. Find the inverse of f: N → S, where S is range of f.


Show that y = `log (1 + x) – (2x)/(2 + x), x > - 1` is an increasing function on its domain.


Find the value of x, such that f(x) is decreasing function.

f(x) = 2x3 – 15x2 – 84x – 7 


Prove that function f(x) = `x - 1/x`, x ∈ R and x ≠ 0 is increasing function


If the function f(x) = `7/x - 3`, x ∈ R, x ≠ 0 is a decreasing function, then x ∈ ______


Find the values of x such that f(x) = 2x3 – 15x2 + 36x + 1 is increasing function


Find the values of x such that f(x) = 2x3 – 15x2 – 144x – 7 is decreasing function


The function f(x) = x3 - 3x is ______.


f(x) = `{{:(0","                 x = 0 ), (x - 3","   x > 0):}` The function f(x) is ______


For which interval the given function f(x) = 2x3 – 9x2 + 12x + 7 is increasing?


The function f(x) = x3 + 6x2 + (9 + 2k)x + 1 is strictly increasing for all x, if ____________.


Which of the following graph represent the strictly increasing function.


If f(x) = `x - 1/x`, x∈R, x ≠ 0 then f(x) is increasing.


y = log x satisfies for x > 1, the inequality ______.


If f(x) = `x/(x^2 + 1)` is increasing function then the value of x lies in ______.


The interval in which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×