मराठी

Find the Intervals in Which F(X) = (X + 2) E−X is Increasing Or Decreasing ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find the intervals in which f(x) = (x + 2) e−x is increasing or decreasing ?

बेरीज

उत्तर

\[f\left( x \right) = \left( x + 2 \right) e^{- x} \]

\[f'\left( x \right) = - e^{- x} \left( x + 2 \right) + e^{- x} \]

\[ = - x e^{- x} - 2 e^{- x} + e^{- x} \]

\[ = - x e^{- x} - e^{- x} \]

\[ = e^{- x} \left( - x - 1 \right)\]

\[\text { For f(x) to be increasing, we must have }\]

\[f'\left( x \right) > 0\]

\[ \Rightarrow e^{- x} \left( - x - 1 \right) > 0\]

\[ \Rightarrow - x - 1 > 0 \left[ \because e^{- x} > 0, \forall x \in R \right]\]

\[ \Rightarrow - x > 1\]

\[ \Rightarrow x < - 1\]

\[ \Rightarrow x \in \left( - \infty , - 1 \right)\]

\[\text { So, f(x) is increasing on} \left( - \infty , - 1 \right) . \]

\[\text { For f(x) to be decreasing, we must have }\]

\[f'\left( x \right) < 0\]

\[ \Rightarrow e^{- x} \left( - x - 1 \right) < 0\]

\[ \Rightarrow - x - 1 < 0 \left[ \because e^{- x} > 0, \forall x \in R \right]\]

\[ \Rightarrow - x < 1\]

\[ \Rightarrow x > - 1\]

\[ \Rightarrow x \in \left( - 1, \infty \right)\]

\[\text { So, f(x) is decreasing on }\left( - 1, \infty \right).\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 17: Increasing and Decreasing Functions - Exercise 17.2 [पृष्ठ ३५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 17 Increasing and Decreasing Functions
Exercise 17.2 | Q 27 | पृष्ठ ३५

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

The amount of pollution content added in air in a city due to x-diesel vehicles is given by P(x) = 0.005x3 + 0.02x2 + 30x. Find the marginal increase in pollution content when 3 diesel vehicles are added and write which value is indicated in the above question.


Find the intervals in which f(x) = sin 3x – cos 3x, 0 < x < π, is strictly increasing or strictly decreasing.


Find the intervals in which the following functions are strictly increasing or decreasing:

10 − 6x − 2x2


Find the intervals in which the following functions are strictly increasing or decreasing:

6 − 9x − x2


Show that the function f(x) = 4x3 - 18x2 + 27x - 7 is always increasing on R.


Show that f(x) = \[\frac{1}{1 + x^2}\] is neither increasing nor decreasing on R ?


Find the interval in which the following function are increasing or decreasing f(x) = 5 + 36x + 3x2 − 2x?


Find the interval in which the following function are increasing or decreasing f(x) = 6 + 12x + 3x2 − 2x3 ?


Find the interval in which the following function are increasing or decreasing f(x) = x3 − 12x2 + 36x + 17 ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \left\{ x(x - 2) \right\}^2\] ?


Show that f(x) = x − sin x is increasing for all x ∈ R ?


Show that f(x) = sin x − cos x is an increasing function on (−π/4, π/4) ?


Show that f(x) = tan−1 x − x is a decreasing function on R ?


Prove that the following function is increasing on R f \[(x) =\]3 \[x^5\] + 40 \[x^3\] + 240\[x\] ?


Prove that the following function is increasing on R f \[f\left( x \right) = 4 x^3 - 18 x^2 + 27x - 27\] ?


Prove that the function f given by f(x) = log cos x is strictly increasing on (−π/2, 0) and strictly decreasing on (0, π/2) ?


Prove that the function f given by f(x) = x3 − 3x2 + 4x is strictly increasing on R ?


Find the set of values of 'b' for which f(x) = b (x + cos x) + 4 is decreasing on R ?


If g (x) is a decreasing function on R and f(x) = tan−1 [g (x)]. State whether f(x) is increasing or decreasing on R ?


The function \[f\left( x \right) = \log_e \left( x^3 + \sqrt{x^6 + 1} \right)\] is of the following types:


Function f(x) = ax is increasing on R, if


Show that the function f given by f(x) = tan–1 (sin x + cos x) is decreasing for all \[x \in \left( \frac{\pi}{4}, \frac{\pi}{2} \right) .\]


If the demand function is D = 50 - 3p - p2, find the elasticity of demand at (a) p = 5 (b) p = 2 ,  Interpret your result. 


The edge of a cube is decreasing at the rate of`( 0.6"cm")/sec`. Find the rate at which its volume is decreasing, when the edge of the cube is 2 cm.


Solve the following : Find the intervals on which the function y = xx, (x > 0) is increasing and decreasing.


Test whether the following function is increasing or decreasing.

f(x) = `7/"x" - 3`, x ∈ R, x ≠ 0


Find the value of x, such that f(x) is increasing function.

f(x) = x2 + 2x - 5 


Show that function f(x) =`("x - 2")/("x + 1")`, x ≠ -1 is increasing.


Show that f(x) = x – cos x is increasing for all x.


Show that the function f(x) = x3 + 10x + 7 for x ∈ R is strictly increasing


Choose the correct alternative:

The function f(x) = x3 – 3x2 + 3x – 100, x ∈ R is


State whether the following statement is True or False: 

If the function f(x) = x2 + 2x – 5 is an increasing function, then x < – 1


Find the values of x such that f(x) = 2x3 – 15x2 – 144x – 7 is decreasing function


By completing the following activity, find the values of x such that f(x) = 2x3 – 15x2 – 84x – 7 is decreasing function.

Solution: f(x) = 2x3 – 15x2 – 84x – 7

∴ f'(x) = `square`

∴ f'(x) = 6`(square) (square)`

Since f(x) is decreasing function.

∴ f'(x) < 0

Case 1: `(square)` > 0 and (x + 2) < 0

∴ x ∈ `square`

Case 2: `(square)` < 0 and (x + 2) > 0

∴ x ∈ `square`

∴ f(x) is decreasing function if and only if x ∈ `square`


A circular pIate is contracting at the uniform rate of 5cm/sec. The rate at which the perimeter is decreasing when the radius of the circle is 10 cm Jong is


The function `1/(1 + x^2)` is increasing in the interval ______ 


Show that f(x) = tan–1(sinx + cosx) is an increasing function in `(0, pi/4)`


y = log x satisfies for x > 1, the inequality ______.


The function f(x) = x3 + 3x is increasing in interval ______.


In which one of the following intervals is the function f(x) = x3 – 12x increasing?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×