Advertisements
Advertisements
प्रश्न
Find the interval in which the following function are increasing or decreasing f(x) = 5 + 36x + 3x2 − 2x3 ?
उत्तर
\[\text { When } \left( x - a \right)\left( x - b \right)>0 \text { with }a < b, x < a \text { or }x>b.\]
\[\text { When } \left( x - a \right)\left( x - b \right)<0 \text { with } a < b, a < x < b .\]
\[f\left( x \right) = 5 + 36x + 3 x^2 - 2 x^3 \]
\[f'\left( x \right) = 36 + 6x - 6 x^2 \]
\[ = - 6 \left( x^2 - x - 6 \right)\]
\[ = - 6 \left( x - 3 \right)\left( x + 2 \right)\]
\[\text{ For }f(x) \text { to be increasing, we must have }\]
\[f'\left( x \right) > 0\]
\[ \Rightarrow - 6 \left( x - 3 \right)\left( x + 2 \right) > 0 \]
\[ \Rightarrow \left( x - 3 \right)\left( x + 2 \right) < 0 \left[ \text {Since} - 6 < 0, - 6 \left( x - 1 \right)\left( x + 2 \right) > 0 \Rightarrow \left( x - 1 \right)\left( x + 2 \right) < 0 \right]\]
\[ \Rightarrow - 2 < x < 3 \]
\[ \Rightarrow x \in \left( - 2, 3 \right)\]
\[\text { So },f(x)\text { is increasing on } \left( - 2, 3 \right) . \]
\[\text { For }f(x) \text { to be decreasing, we must have}\]
\[f'\left( x \right) < 0\]
\[ \Rightarrow - 6 \left( x - 3 \right)\left( x + 2 \right) < 0\]
\[ \Rightarrow \left( x - 3 \right)\left( x + 2 \right) > 0 \left[ \text { Since } - 6 < 0, - 6 \left( x - 1 \right)\left( x + 2 \right) < 0 \Rightarrow \left( x - 1 \right)\left( x + 2 \right) > 0 \right]\]
\[ \Rightarrow x < - 2 \ or \ x > 3 \]
\[ \Rightarrow x \in \left( - \infty , - 2 \right) \cup \left( 3, \infty \right)\]
\[\text { So,}f(x)\text { is decreasing on } \left( - \infty , - 2 \right) \cup \left( 3, \infty \right) .\]
APPEARS IN
संबंधित प्रश्न
The side of an equilateral triangle is increasing at the rate of 2 cm/s. At what rate is its area increasing when the side of the triangle is 20 cm ?
Show that the function given by f(x) = sin x is
- strictly increasing in `(0, pi/2)`
- strictly decreasing in `(pi/2, pi)`
- neither increasing nor decreasing in (0, π)
Prove that the function f(x) = loge x is increasing on (0, ∞) ?
Show that f(x) = \[\frac{1}{1 + x^2}\] is neither increasing nor decreasing on R ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 24x + 107 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{x^4}{4} + \frac{2}{3} x^3 - \frac{5}{2} x^2 - 6x + 7\] ?
Determine the values of x for which the function f(x) = x2 − 6x + 9 is increasing or decreasing. Also, find the coordinates of the point on the curve y = x2 − 6x + 9 where the normal is parallel to the line y = x + 5 ?
Show that f(x) = log sin x is increasing on (0, π/2) and decreasing on (π/2, π) ?
Show that f(x) = cos2 x is a decreasing function on (0, π/2) ?
Prove that the following function is increasing on R f \[f\left( x \right) = 4 x^3 - 18 x^2 + 27x - 27\] ?
Find the value(s) of a for which f(x) = x3 − ax is an increasing function on R ?
Write the set of values of 'a' for which f(x) = loga x is decreasing in its domain ?
Write the set of values of a for which the function f(x) = ax + b is decreasing for all x ∈ R ?
The function \[f\left( x \right) = \frac{x}{1 + \left| x \right|}\] is
Function f(x) = ax is increasing on R, if
Let ϕ(x) = f(x) + f(2a − x) and f"(x) > 0 for all x ∈ [0, a]. Then, ϕ (x)
Using truth table show that ∼ (p → ∼ q) ≡ p ∧ q
For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the value of x for which Total cost is decreasing.
If the demand function is D = 50 - 3p - p2, find the elasticity of demand at (a) p = 5 (b) p = 2 , Interpret your result.
Find the values of x for which the following functions are strictly decreasing : f(x) = x3 – 9x2 + 24x + 12
Solve the following : Find the intervals on which the function y = xx, (x > 0) is increasing and decreasing.
State whether the following statement is True or False:
The function f(x) = `"x"*"e"^("x" (1 - "x"))` is increasing on `((-1)/2, 1)`.
Find the values of x, for which the function f(x) = x3 + 12x2 + 36𝑥 + 6 is monotonically decreasing
The slope of tangent at any point (a, b) is also called as ______.
The total cost function for production of articles is given as C = 100 + 600x – 3x2, then the values of x for which the total cost is decreasing is ______
Show that the function f(x) = `(x - 2)/(x + 1)`, x ≠ – 1 is increasing
For every value of x, the function f(x) = `1/7^x` is ______
If f(x) = x3 – 15x2 + 84x – 17, then ______.
The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.
Which of the following functions is decreasing on `(0, pi/2)`?
Let f be a real valued function defined on (0, 1) ∪ (2, 4) such that f '(x) = 0 for every x, then ____________.
The function f (x) = x2, for all real x, is ____________.
The function f(x) = tan-1 (sin x + cos x) is an increasing function in:
State whether the following statement is true or false.
If f'(x) > 0 for all x ∈ (a, b) then f(x) is decreasing function in the interval (a, b).
The function f(x) = `(4x^3 - 3x^2)/6 - 2sinx + (2x - 1)cosx` ______.
Let f(x) = tan–1`phi`(x), where `phi`(x) is monotonically increasing for `0 < x < π/2`. Then f(x) is ______.
y = log x satisfies for x > 1, the inequality ______.
The intevral in which the function f(x) = 5 + 36x – 3x2 increases will be ______.