मराठी

Write the Set of Values of 'A' for Which F(X) = Loga X is Decreasing in Its Domain ? - Mathematics

Advertisements
Advertisements

प्रश्न

Write the set of values of 'a' for which f(x) = loga x is decreasing in its domain ?

बेरीज

उत्तर

\[\text { Given }: f\left( x \right) = \log_a x\]

\[\text { Domain of the given function is }\left( 0, \infty \right).\]

\[\text { Let  }x_1 , x_2 \in \left( 0, \infty \right) \text { such that } x_1 < x_2 . \]

\[\text { Since the given function is logarithmic, either a } > 1 or 0 < a < 1 . \]

\[\text { Case 1: Let }a > 1\]

\[\text { Here} , \]

\[ x_1 < x_2 \]

\[ \Rightarrow \log_a x_1 < \log_a x_2 \]

\[ \Rightarrow f\left( x_1 \right) < f\left( x_2 \right)\]

\[\therefore x_1 < x_2 \Rightarrow f\left( x_1 \right) < f\left( x_2 \right), \forall x_1 , x_2 \in \left( 0, \infty \right)\]

\[\text { So },f\left( x \right)\text { is increasing on }\left( 0, \infty \right).\]

\[\text { Case 2: Let }0 < a < 1\]

\[\text { Here, }\]

\[ x_1 < x_2 \]

\[ \Rightarrow \log_a x_1 > \log_a x_2 \]

\[ \Rightarrow f\left( x_1 \right) > f\left( x_2 \right)\]

\[\therefore x_1 < x_2 \Rightarrow f\left( x_1 \right) > f\left( x_2 \right), \forall x_1 , x_2 \in \left( 0, \infty \right)\]

\[\text { So,}f\left( x \right) \text { is decreasing on }\left( 0, \infty \right)\]

\[\text { Thus, for }0 < a < 1,f\left( x \right)\text {  is decreasing in its domain }.\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 17: Increasing and Decreasing Functions - Exercise 17.3 [पृष्ठ ३९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 17 Increasing and Decreasing Functions
Exercise 17.3 | Q 4 | पृष्ठ ३९

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the value of c in Rolle's theorem for the function `f(x) = x^3 - 3x " in " (-sqrt3, 0)`


Find the intervals in which the following functions are strictly increasing or decreasing:

 (x + 1)3 (x − 3)3


Prove that the logarithmic function is strictly increasing on (0, ∞).


Water is dripping out from a conical funnel of semi-verticle angle `pi/4` at the uniform rate of `2 cm^2/sec`in the surface, through a tiny hole at the vertex of the bottom. When the slant height of the water level is 4 cm, find the rate of decrease of the slant height of the water.


Find the interval in which the following function are increasing or decreasing f(x) = 5 + 36x + 3x2 − 2x?


Find the interval in which the following function are increasing or decreasing f(x) = 6 + 12x + 3x2 − 2x3 ?


Find the interval in which the following function are increasing or decreasing  f(x) =  \[5 x^\frac{3}{2} - 3 x^\frac{5}{2}\]  x > 0 ?


Determine the values of x for which the function f(x) = x2 − 6x + 9 is increasing or decreasing. Also, find the coordinates of the point on the curve y = x2 − 6x + 9 where the normal is parallel to the line y = x + 5 ? 


Show that f(x) = (x − 1) ex + 1 is an increasing function for all x > 0 ?


Show that the function f given by f(x) = 10x is increasing for all x ?


Prove that the following function is increasing on R f \[(x) =\]3 \[x^5\] + 40 \[x^3\] + 240\[x\] ?


Prove that the function f given by f(x) = log cos x is strictly increasing on (−π/2, 0) and strictly decreasing on (0, π/2) ?


Find the interval in which f(x) is increasing or decreasing f(x) = sinx + |sin x|, 0 < x \[\leq 2\pi\] ?


Find the interval in which f(x) is increasing or decreasing f(x) = sinx(1 + cosx), 0 < x < \[\frac{\pi}{2}\] ?


Write the interval in which f(x) = sin x + cos x, x ∈ [0, π/2] is increasing ?


In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is


f(x) = 2x − tan−1 x − log \[\left\{ x + \sqrt{x^2 + 1} \right\}\] is monotonically increasing when

 


The function f(x) = x9 + 3x7 + 64 is increasing on


If x = cos2 θ and y = cot θ then find `dy/dx  at  θ=pi/4` 


Find the intervals in which function f given by f(x)  = 4x3 - 6x2 - 72x + 30 is (a) strictly increasing, (b) strictly decresing .


If the demand function is D = 50 - 3p - p2, find the elasticity of demand at (a) p = 5 (b) p = 2 ,  Interpret your result. 


Show that y = `log (1 + x) – (2x)/(2 + x), x > - 1` is an increasing function on its domain.


Solve the following : Find the intervals on which the function y = xx, (x > 0) is increasing and decreasing.


Find the value of x, such that f(x) is increasing function.

f(x) = 2x3 - 15x2 - 144x - 7 


Test whether the following function f(x) = 2 – 3x + 3x2 – x3, x ∈ R is increasing or decreasing


Find the values of x for which the function f(x) = 2x3 – 6x2 + 6x + 24 is strictly increasing


A circular pIate is contracting at the uniform rate of 5cm/sec. The rate at which the perimeter is decreasing when the radius of the circle is 10 cm Jong is


Which of the following functions is decreasing on `(0, pi/2)`?


The function f(x) = `(2x^2 - 1)/x^4`, x > 0, decreases in the interval ______.


2x3 - 6x + 5 is an increasing function, if ____________.


The function `"f"("x") = "x"/"logx"` increases on the interval


Which of the following graph represent the strictly increasing function.


Let f(x) = tan–1`phi`(x), where `phi`(x) is monotonically increasing for `0 < x < π/2`. Then f(x) is ______.


The function f(x) = tan–1(sin x + cos x) is an increasing function in ______.


A function f is said to be increasing at a point c if ______.


Read the following passage:

The use of electric vehicles will curb air pollution in the long run.

The use of electric vehicles is increasing every year and the estimated electric vehicles in use at any time t is given by the function V:

V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2`

where t represents the time and t = 1, 2, 3, ...... corresponds to years 2001, 2002, 2003, ...... respectively.

Based on the above information, answer the following questions:

  1. Can the above function be used to estimate number of vehicles in the year 2000? Justify. (2)
  2. Prove that the function V(t) is an increasing function. (2)

The function f(x) = x3 + 3x is increasing in interval ______.


In which one of the following intervals is the function f(x) = x3 – 12x increasing?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×