Advertisements
Advertisements
प्रश्न
Write the set of values of 'a' for which f(x) = loga x is decreasing in its domain ?
उत्तर
\[\text { Given }: f\left( x \right) = \log_a x\]
\[\text { Domain of the given function is }\left( 0, \infty \right).\]
\[\text { Let }x_1 , x_2 \in \left( 0, \infty \right) \text { such that } x_1 < x_2 . \]
\[\text { Since the given function is logarithmic, either a } > 1 or 0 < a < 1 . \]
\[\text { Case 1: Let }a > 1\]
\[\text { Here} , \]
\[ x_1 < x_2 \]
\[ \Rightarrow \log_a x_1 < \log_a x_2 \]
\[ \Rightarrow f\left( x_1 \right) < f\left( x_2 \right)\]
\[\therefore x_1 < x_2 \Rightarrow f\left( x_1 \right) < f\left( x_2 \right), \forall x_1 , x_2 \in \left( 0, \infty \right)\]
\[\text { So },f\left( x \right)\text { is increasing on }\left( 0, \infty \right).\]
\[\text { Case 2: Let }0 < a < 1\]
\[\text { Here, }\]
\[ x_1 < x_2 \]
\[ \Rightarrow \log_a x_1 > \log_a x_2 \]
\[ \Rightarrow f\left( x_1 \right) > f\left( x_2 \right)\]
\[\therefore x_1 < x_2 \Rightarrow f\left( x_1 \right) > f\left( x_2 \right), \forall x_1 , x_2 \in \left( 0, \infty \right)\]
\[\text { So,}f\left( x \right) \text { is decreasing on }\left( 0, \infty \right)\]
\[\text { Thus, for }0 < a < 1,f\left( x \right)\text { is decreasing in its domain }.\]
APPEARS IN
संबंधित प्रश्न
Find the value of c in Rolle's theorem for the function `f(x) = x^3 - 3x " in " (-sqrt3, 0)`
Find the intervals in which the following functions are strictly increasing or decreasing:
(x + 1)3 (x − 3)3
Prove that the logarithmic function is strictly increasing on (0, ∞).
Water is dripping out from a conical funnel of semi-verticle angle `pi/4` at the uniform rate of `2 cm^2/sec`in the surface, through a tiny hole at the vertex of the bottom. When the slant height of the water level is 4 cm, find the rate of decrease of the slant height of the water.
Find the interval in which the following function are increasing or decreasing f(x) = 5 + 36x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing f(x) = 6 + 12x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing f(x) = \[5 x^\frac{3}{2} - 3 x^\frac{5}{2}\] x > 0 ?
Determine the values of x for which the function f(x) = x2 − 6x + 9 is increasing or decreasing. Also, find the coordinates of the point on the curve y = x2 − 6x + 9 where the normal is parallel to the line y = x + 5 ?
Show that f(x) = (x − 1) ex + 1 is an increasing function for all x > 0 ?
Show that the function f given by f(x) = 10x is increasing for all x ?
Prove that the following function is increasing on R f \[(x) =\]3 \[x^5\] + 40 \[x^3\] + 240\[x\] ?
Prove that the function f given by f(x) = log cos x is strictly increasing on (−π/2, 0) and strictly decreasing on (0, π/2) ?
Find the interval in which f(x) is increasing or decreasing f(x) = sinx + |sin x|, 0 < x \[\leq 2\pi\] ?
Find the interval in which f(x) is increasing or decreasing f(x) = sinx(1 + cosx), 0 < x < \[\frac{\pi}{2}\] ?
Write the interval in which f(x) = sin x + cos x, x ∈ [0, π/2] is increasing ?
In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is
f(x) = 2x − tan−1 x − log \[\left\{ x + \sqrt{x^2 + 1} \right\}\] is monotonically increasing when
The function f(x) = x9 + 3x7 + 64 is increasing on
If x = cos2 θ and y = cot θ then find `dy/dx at θ=pi/4`
Find the intervals in which function f given by f(x) = 4x3 - 6x2 - 72x + 30 is (a) strictly increasing, (b) strictly decresing .
If the demand function is D = 50 - 3p - p2, find the elasticity of demand at (a) p = 5 (b) p = 2 , Interpret your result.
Show that y = `log (1 + x) – (2x)/(2 + x), x > - 1` is an increasing function on its domain.
Solve the following : Find the intervals on which the function y = xx, (x > 0) is increasing and decreasing.
Find the value of x, such that f(x) is increasing function.
f(x) = 2x3 - 15x2 - 144x - 7
Test whether the following function f(x) = 2 – 3x + 3x2 – x3, x ∈ R is increasing or decreasing
Find the values of x for which the function f(x) = 2x3 – 6x2 + 6x + 24 is strictly increasing
A circular pIate is contracting at the uniform rate of 5cm/sec. The rate at which the perimeter is decreasing when the radius of the circle is 10 cm Jong is
Which of the following functions is decreasing on `(0, pi/2)`?
The function f(x) = `(2x^2 - 1)/x^4`, x > 0, decreases in the interval ______.
2x3 - 6x + 5 is an increasing function, if ____________.
The function `"f"("x") = "x"/"logx"` increases on the interval
Which of the following graph represent the strictly increasing function.
Let f(x) = tan–1`phi`(x), where `phi`(x) is monotonically increasing for `0 < x < π/2`. Then f(x) is ______.
The function f(x) = tan–1(sin x + cos x) is an increasing function in ______.
A function f is said to be increasing at a point c if ______.
Read the following passage:
The use of electric vehicles will curb air pollution in the long run. V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2` where t represents the time and t = 1, 2, 3, ...... corresponds to years 2001, 2002, 2003, ...... respectively. |
Based on the above information, answer the following questions:
- Can the above function be used to estimate number of vehicles in the year 2000? Justify. (2)
- Prove that the function V(t) is an increasing function. (2)
The function f(x) = x3 + 3x is increasing in interval ______.
In which one of the following intervals is the function f(x) = x3 – 12x increasing?