Advertisements
Advertisements
प्रश्न
Read the following passage:
The use of electric vehicles will curb air pollution in the long run. V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2` where t represents the time and t = 1, 2, 3, ...... corresponds to years 2001, 2002, 2003, ...... respectively. |
Based on the above information, answer the following questions:
- Can the above function be used to estimate number of vehicles in the year 2000? Justify. (2)
- Prove that the function V(t) is an increasing function. (2)
उत्तर
Given, the estimated of electric vehicles in use at any time t is given by
V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2`
- No, the function cannot be used to calculate the number of vehicles in 2000.
As, t = 1, 2, 3, ... where starting year is 2001, 2002, 2003 ...
Therefore, it could not be used to calculate the year before 2001. - Here, V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2`
`(dV(t))/(dt) = 1/5 xx 3t^2 - 5/2 xx 2t + 25`
V'(t) = `3/5 t^2 - 5t + 25`
For the function to be increasing V'(t) > 0
Here, `3/2 t^2 - 5t + 25 > 0`
Hence, function V(t) > 0
So, it is an increasing function.
APPEARS IN
संबंधित प्रश्न
Find the intervals in which f(x) = sin 3x – cos 3x, 0 < x < π, is strictly increasing or strictly decreasing.
Find the intervals in which the function f given by f(x) = 2x2 − 3x is
- strictly increasing
- strictly decreasing
Find the values of x for `y = [x(x - 2)]^2` is an increasing function.
The interval in which y = x2 e–x is increasing is ______.
Find the intervals in which the function f given by `f(x) = x^3 + 1/x^3 x != 0`, is (i) increasing (ii) decreasing.
Show that f(x) = e1/x, x ≠ 0 is a decreasing function for all x ≠ 0 ?
Show that f(x) = loga x, 0 < a < 1 is a decreasing function for all x > 0 ?
Show that the function f(x) = cot \[-\] l(sinx + cosx) is decreasing on \[\left( 0, \frac{\pi}{4} \right)\] and increasing on \[\left( 0, \frac{\pi}{4} \right)\] ?
Show that the function f given by f(x) = 10x is increasing for all x ?
What are the values of 'a' for which f(x) = ax is increasing on R ?
Write the set of values of 'a' for which f(x) = loga x is decreasing in its domain ?
f(x) = 2x − tan−1 x − log \[\left\{ x + \sqrt{x^2 + 1} \right\}\] is monotonically increasing when
Every invertible function is
Function f(x) = loga x is increasing on R, if
If x = cos2 θ and y = cot θ then find `dy/dx at θ=pi/4`
Find the values of x for which the following func- tions are strictly increasing : f(x) = x3 – 6x2 – 36x + 7
Test whether the following function is increasing or decreasing.
f(x) = `7/"x" - 3`, x ∈ R, x ≠ 0
Test whether the function f(x) = x3 + 6x2 + 12x − 5 is increasing or decreasing for all x ∈ R
The slope of tangent at any point (a, b) is also called as ______.
If f(x) = [x], where [x] is the greatest integer not greater than x, then f'(1') = ______.
The sides of a square are increasing at the rate of 0.2 cm/sec. When the side is 25cm long, its area is increasing at the rate of ______
Let f(x) = x3 + 9x2 + 33x + 13, then f(x) is ______.
Which of the following functions is decreasing on `(0, pi/2)`?
The function f(x) = mx + c where m, c are constants, is a strict decreasing function for all `"x" in "R"` , if ____________.
If f(x) = sin x – cos x, then interval in which function is decreasing in 0 ≤ x ≤ 2 π, is:
The function which is neither decreasing nor increasing in `(pi/2,(3pi)/2)` is ____________.
The function `"f"("x") = "log" (1 + "x") - (2"x")/(2 + "x")` is increasing on ____________.
Let f(x) be a function such that; f'(x) = log1/3(log3(sinx + a)) (where a ∈ R). If f(x) is decreasing for all real values of x then the exhaustive solution set of a is ______.
A function f is said to be increasing at a point c if ______.