Advertisements
Advertisements
प्रश्न
Test whether the function f(x) = x3 + 6x2 + 12x − 5 is increasing or decreasing for all x ∈ R
उत्तर
f(x) = x3 + 6x2 + 12x − 5
∴ f′(x) = 3x2 + 12x + 12
= 3(x2 + 4x + 4)
= 3(x + 2)2
3(x + 2)2 is always positive for x ≠ – 2
∴ f′(x) ≥ 0 for all x ∈ R
Hence, f(x) is an increasing function for all x ∈ R.
APPEARS IN
संबंधित प्रश्न
Find the intervals in which the following functions are strictly increasing or decreasing:
(x + 1)3 (x − 3)3
Find the intervals in which the following functions are strictly increasing or decreasing:
6 − 9x − x2
Show that y = `log(1+x) - (2x)/(2+x), x> - 1`, is an increasing function of x throughout its domain.
Find the values of x for `y = [x(x - 2)]^2` is an increasing function.
Prove that y = `(4sin theta)/(2 + cos theta) - theta` is an increasing function of θ in `[0, pi/2]`
Prove that the function f given by f(x) = log sin x is strictly increasing on `(0, pi/2)` and strictly decreasing on `(pi/2, pi)`
Find the intervals in which the function f given by `f(x) = (4sin x - 2x - x cos x)/(2 + cos x)` is (i) increasing (ii) decreasing.
Prove that the function f(x) = loge x is increasing on (0, ∞) ?
Prove that the function f(x) = loga x is increasing on (0, ∞) if a > 1 and decreasing on (0, ∞), if 0 < a < 1 ?
Show that f(x) = \[\frac{1}{x}\] is a decreasing function on (0, ∞) ?
Without using the derivative, show that the function f (x) = | x | is.
(a) strictly increasing in (0, ∞)
(b) strictly decreasing in (−∞, 0) .
Find the interval in which the following function are increasing or decreasing f(x) = 10 − 6x − 2x2 ?
Find the interval in which the following function are increasing or decreasing f(x) = 6 − 9x − x2 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 15x2 + 36x + 1 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 + 9x2 + 12x + 20 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 9x2 + 12x − 5 ?
Find the interval in which the following function are increasing or decreasing f(x) = −2x3 − 9x2 − 12x + 1 ?
Find the interval in which the following function are increasing or decreasing f(x) = \[5 x^\frac{3}{2} - 3 x^\frac{5}{2}\] x > 0 ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 + 9x + 15 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] ?
Show that f(x) = e2x is increasing on R.
Show that f(x) = x − sin x is increasing for all x ∈ R ?
Show that the function x2 − x + 1 is neither increasing nor decreasing on (0, 1) ?
Show that f(x) = x9 + 4x7 + 11 is an increasing function for all x ∈ R ?
Show that f(x) = sin x − cos x is an increasing function on (−π/4, π/4) ?
Prove that the function f given by f(x) = x − [x] is increasing in (0, 1) ?
Prove that the function f given by f(x) = log cos x is strictly increasing on (−π/2, 0) and strictly decreasing on (0, π/2) ?
Show that f(x) = x2 − x sin x is an increasing function on (0, π/2) ?
Find the values of b for which the function f(x) = sin x − bx + c is a decreasing function on R ?
Show that f(x) = x + cos x − a is an increasing function on R for all values of a ?
Write the set of values of 'a' for which f(x) = loga x is increasing in its domain ?
Write the set of values of k for which f(x) = kx − sin x is increasing on R ?
If g (x) is a decreasing function on R and f(x) = tan−1 [g (x)]. State whether f(x) is increasing or decreasing on R ?
State whether f(x) = tan x − x is increasing or decreasing its domain ?
If the function f(x) = 2 tan x + (2a + 1) loge | sec x | + (a − 2) x is increasing on R, then
The function f(x) = x2 e−x is monotonic increasing when
Function f(x) = cos x − 2 λ x is monotonic decreasing when
Function f(x) = x3 − 27x + 5 is monotonically increasing when
The price P for demand D is given as P = 183 + 120 D – 3D2.
Find D for which the price is increasing.
Prove that the function f : N → N, defined by f(x) = x2 + x + 1 is one-one but not onto. Find the inverse of f: N → S, where S is range of f.
Prove that y = `(4sinθ)/(2 + cosθ) - θ` is an increasing function if `θ ∈[0, pi/2]`
Solve the following:
Find the intervals on which the function f(x) = `x/logx` is increasing and decreasing.
State whether the following statement is True or False:
The function f(x) = `"x"*"e"^("x" (1 - "x"))` is increasing on `((-1)/2, 1)`.
Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing
Find the values of x for which f(x) = 2x3 – 15x2 – 144x – 7 is
(a) Strictly increasing
(b) strictly decreasing
Choose the correct alternative:
The function f(x) = x3 – 3x2 + 3x – 100, x ∈ R is
Find the values of x such that f(x) = 2x3 – 15x2 + 36x + 1 is increasing function
A circular pIate is contracting at the uniform rate of 5cm/sec. The rate at which the perimeter is decreasing when the radius of the circle is 10 cm Jong is
For every value of x, the function f(x) = `1/"a"^x`, a > 0 is ______.
The function f(x) = x3 - 3x is ______.
f(x) = `{{:(0"," x = 0 ), (x - 3"," x > 0):}` The function f(x) is ______
The function f(x) = sin x + 2x is ______
Let f(x) = x3 + 9x2 + 33x + 13, then f(x) is ______.
Show that f(x) = tan–1(sinx + cosx) is an increasing function in `(0, pi/4)`
Let the f : R → R be defined by f (x) = 2x + cosx, then f : ______.
y = x(x – 3)2 decreases for the values of x given by : ______.
The function f(x) = 4 sin3x – 6 sin2x + 12 sinx + 100 is strictly ______.
The values of a for which the function f(x) = sinx – ax + b increases on R are ______.
The function f(x) = x2 – 2x is increasing in the interval ____________.
The function f(x) = mx + c where m, c are constants, is a strict decreasing function for all `"x" in "R"` , if ____________.
The length of the longest interval, in which the function `3 "sin x" - 4 "sin"^3"x"` is increasing, is ____________.
Show that function f(x) = tan x is increasing in `(0, π/2)`.
Let f: [0, 2]→R be a twice differentiable function such that f"(x) > 0, for all x ∈( 0, 2). If `phi` (x) = f(x) + f(2 – x), then `phi` is ______.
Let f(x) be a function such that; f'(x) = log1/3(log3(sinx + a)) (where a ∈ R). If f(x) is decreasing for all real values of x then the exhaustive solution set of a is ______.
The function f(x) = tan–1(sin x + cos x) is an increasing function in ______.
The interval in which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.
The intevral in which the function f(x) = 5 + 36x – 3x2 increases will be ______.