मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Test whether the function f(x) = x3 + 6x2 + 12x − 5 is increasing or decreasing for all x ∈ R - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Test whether the function f(x) = x3 + 6x2 + 12x − 5 is increasing or decreasing for all x ∈ R

बेरीज

उत्तर

f(x) = x3 + 6x2 + 12x − 5

∴ f′(x) = 3x2 + 12x + 12

= 3(x2 + 4x + 4)

= 3(x + 2)2

3(x + 2)2 is always positive for x ≠ – 2

∴ f′(x) ≥ 0 for all x ∈ R

Hence, f(x) is an increasing function for all x ∈ R.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2.2: Applications of Derivatives - Short Answers I

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the intervals in which the following functions are strictly increasing or decreasing:

 (x + 1)3 (x − 3)3


Find the intervals in which the following functions are strictly increasing or decreasing:

6 − 9x − x2


Show that y = `log(1+x) - (2x)/(2+x), x> -  1`, is an increasing function of x throughout its domain.


Find the values of x for  `y = [x(x - 2)]^2` is an increasing function.


Prove that  y = `(4sin theta)/(2 + cos theta) - theta` is an increasing function of θ in `[0, pi/2]`


Prove that the function f given by f(x) = log sin x is strictly increasing on `(0, pi/2)` and strictly decreasing on `(pi/2, pi)`


Find the intervals in which the function f given by `f(x) = (4sin x - 2x - x cos x)/(2 + cos x)` is (i) increasing (ii) decreasing.


Prove that the function f(x) = loge x is increasing on (0, ∞) ?


Prove that the function f(x) = loga x is increasing on (0, ∞) if a > 1 and decreasing on (0, ∞), if 0 < a < 1 ?


Show that f(x) = \[\frac{1}{x}\] is a decreasing function on (0, ∞) ?


Without using the derivative, show that the function f (x) = | x | is.
(a) strictly increasing in (0, ∞)
(b) strictly decreasing in (−∞, 0) .


Find the interval in which the following function are increasing or decreasing f(x) = 10 − 6x − 2x2  ?


Find the interval in which the following function are increasing or decreasing  f(x) = 6 − 9x − x2  ?


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 15x2 + 36x + 1 ?


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 + 9x2 + 12x + 20  ?


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 9x2 + 12x − 5 ?


Find the interval in which the following function are increasing or decreasing f(x) = −2x3 − 9x2 − 12x + 1  ?


Find the interval in which the following function are increasing or decreasing  f(x) =  \[5 x^\frac{3}{2} - 3 x^\frac{5}{2}\]  x > 0 ?


Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 + 9x + 15 ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] ?


Show that f(x) = e2x is increasing on R.


Show that f(x) = x − sin x is increasing for all x ∈ R ?


Show that the function x2 − x + 1 is neither increasing nor decreasing on (0, 1) ?


Show that f(x) = x9 + 4x7 + 11 is an increasing function for all x ∈ R ? 


Show that f(x) = sin x − cos x is an increasing function on (−π/4, π/4) ?


Prove that the function f given by f(x) = x − [x] is increasing in (0, 1) ?


Prove that the function f given by f(x) = log cos x is strictly increasing on (−π/2, 0) and strictly decreasing on (0, π/2) ?


Show that f(x) = x2 − x sin x is an increasing function on (0, π/2) ?


Find the values of b for which the function f(x) = sin x − bx + c is a decreasing function on R ?


Show that f(x) = x + cos x − a is an increasing function on R for all values of a ?


Write the set of values of 'a' for which f(x) = loga x is increasing in its domain ?


Write the set of values of k for which f(x) = kx − sin x is increasing on R ?


If g (x) is a decreasing function on R and f(x) = tan−1 [g (x)]. State whether f(x) is increasing or decreasing on R ?


State whether f(x) = tan x − x is increasing or decreasing its domain ?


If the function f(x) = 2 tan x + (2a + 1) loge | sec x | + (a − 2) x is increasing on R, then


The function f(x) = x2 e−x is monotonic increasing when


Function f(x) = cos x − 2 λ x is monotonic decreasing when


Function f(x) = x3 − 27x + 5 is monotonically increasing when


The price P for demand D is given as P = 183 + 120 D – 3D2.
Find D for which the price is increasing.


Prove that the function f : N → N, defined by f(x) = x2 + x + 1 is one-one but not onto. Find the inverse of f: N → S, where S is range of f.


Prove that y = `(4sinθ)/(2 + cosθ) - θ` is an increasing function if `θ ∈[0, pi/2]`


Solve the following:

Find the intervals on which the function f(x) = `x/logx` is increasing and decreasing.


State whether the following statement is True or False:

The function f(x) = `"x"*"e"^("x" (1 - "x"))` is increasing on `((-1)/2, 1)`.


Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing


Find the values of x for which f(x) = 2x3 – 15x2 – 144x – 7 is

(a) Strictly increasing
(b) strictly decreasing


Choose the correct alternative:

The function f(x) = x3 – 3x2 + 3x – 100, x ∈ R is


Find the values of x such that f(x) = 2x3 – 15x2 + 36x + 1 is increasing function


A circular pIate is contracting at the uniform rate of 5cm/sec. The rate at which the perimeter is decreasing when the radius of the circle is 10 cm Jong is


For every value of x, the function f(x) = `1/"a"^x`, a > 0 is ______.


The function f(x) = x3 - 3x is ______.


f(x) = `{{:(0","                 x = 0 ), (x - 3","   x > 0):}` The function f(x) is ______


The function f(x) = sin x + 2x is ______ 


Let f(x) = x3 + 9x2 + 33x + 13, then f(x) is ______.


Show that f(x) = tan–1(sinx + cosx) is an increasing function in `(0, pi/4)`


Let the f : R → R be defined by f (x) = 2x + cosx, then f : ______.


y = x(x – 3)2 decreases for the values of x given by : ______.


The function f(x) = 4 sin3x – 6 sin2x + 12 sinx + 100 is strictly ______.


The values of a for which the function f(x) = sinx – ax + b increases on R are ______.


The function f(x) = x2 – 2x is increasing in the interval ____________.


The function f(x) = mx + c where m, c are constants, is a strict decreasing function for all `"x" in "R"` , if ____________.


The length of the longest interval, in which the function `3  "sin x" - 4  "sin"^3"x"` is increasing, is ____________.


Show that function f(x) = tan x is increasing in `(0, π/2)`.


Let f: [0, 2]→R be a twice differentiable function such that f"(x) > 0, for all x ∈( 0, 2). If `phi` (x) = f(x) + f(2 – x), then `phi` is ______.


Let f(x) be a function such that; f'(x) = log1/3(log3(sinx + a)) (where a ∈ R). If f(x) is decreasing for all real values of x then the exhaustive solution set of a is ______.


The function f(x) = tan–1(sin x + cos x) is an increasing function in ______.


The interval in which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.


The intevral in which the function f(x) = 5 + 36x – 3x2 increases will be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×