Advertisements
Advertisements
प्रश्न
Prove that y = `(4sinθ)/(2 + cosθ) - θ` is an increasing function if `θ ∈[0, pi/2]`
उत्तर
y = `(4sinθ)/(2 + cosθ) - θ`
∴ `dy/"dθ" = d/"dθ"[(4sinθ)/(2 + cosθ) - θ]`
= `d/"dθ"((4sinθ)/(2 + cosθ)) - d/"dθ"(θ)`
= `((2 + cosθ).d/"dθ"(4sinθ) - 4sinθ.d/"dθ"(2 + cos θ))/((2 + cosθ)^2) - 1`
= `((2 + cosθ)"(4cosθ) - (4sinθ)(0 - sinθ))/((2 + cosθ)^2) - 1`
= `(8cosθ + 4cos^2θ + 4sin^2θ)/(2 + cosθ)^2 - 1`
= `(8cosθ + 4(cos^2θ + sin^2θ))/(2 + cosθ)^2 - 1`
= `(8cosθ + 4)/(2 + cosθ)^2 - 1`
= `((8cos θ + 4) - (2 + cosθ)^2)/(2 + cosθ)^2`
= `(8cosθ + 4 - 4 - 4cosθ - cos^2θ)/(2 + cosθ)^2`
= `(4cosθ - cos^2θ)/(2 + cosθ)^2`
= `(cosθ(4 - cosθ))/(2 + cosθ)^2`
Since, `θ ∈ [0, pi/2], cos θ ≥ 0` Also, cos θ < 4
∴ 4 - cos θ > 0
∴ cos θ (4 - cosθ) ≥ 0
∴ `(cosθ(4 - cosθ))/(2 + cosθ^2)≥ 0`
∴ `dy/"dθ" ≥ 0 "for all" θ ∈[0, pi/2]`
Hence, y is an increasing function if `θ ∈[0, pi/2]`.
APPEARS IN
संबंधित प्रश्न
Price P for demand D is given as P = 183 +120D - 3D2 Find D for which the price is increasing
The side of an equilateral triangle is increasing at the rate of 2 cm/s. At what rate is its area increasing when the side of the triangle is 20 cm ?
Find the intervals in which the function f given by f(x) = 2x3 − 3x2 − 36x + 7 is
- Strictly increasing
- Strictly decreasing
Prove that the logarithmic function is strictly increasing on (0, ∞).
Prove that the function f given by f(x) = x2 − x + 1 is neither strictly increasing nor strictly decreasing on (−1, 1).
Find the least value of a such that the function f given by f (x) = x2 + ax + 1 is strictly increasing on [1, 2].
The interval in which y = x2 e–x is increasing is ______.
Find the intervals in which the function f given by `f(x) = (4sin x - 2x - x cos x)/(2 + cos x)` is (i) increasing (ii) decreasing.
Prove that the function f(x) = loga x is increasing on (0, ∞) if a > 1 and decreasing on (0, ∞), if 0 < a < 1 ?
Show that f(x) = \[\frac{1}{x}\] is a decreasing function on (0, ∞) ?
Without using the derivative show that the function f (x) = 7x − 3 is strictly increasing function on R ?
Find the interval in which the following function are increasing or decreasing f(x) = x2 + 2x − 5 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = 3 x^4 - 4 x^3 - 12 x^2 + 5\] ?
Show that f(x) = loga x, 0 < a < 1 is a decreasing function for all x > 0 ?
Show that f(x) = sin x is increasing on (0, π/2) and decreasing on (π/2, π) and neither increasing nor decreasing in (0, π) ?
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π) ?
Show that f(x) = tan x is an increasing function on (−π/2, π/2) ?
Show that f(x) = tan−1 (sin x + cos x) is a decreasing function on the interval (π/4, π/2) ?
State when a function f(x) is said to be increasing on an interval [a, b]. Test whether the function f(x) = x2 − 6x + 3 is increasing on the interval [4, 6] ?
Find the intervals in which f(x) = (x + 2) e−x is increasing or decreasing ?
Show that f(x) = x2 − x sin x is an increasing function on (0, π/2) ?
Find the values of b for which the function f(x) = sin x − bx + c is a decreasing function on R ?
Find the interval in which f(x) is increasing or decreasing f(x) = x|x|, x \[\in\] R ?
Write the set of values of k for which f(x) = kx − sin x is increasing on R ?
State whether f(x) = tan x − x is increasing or decreasing its domain ?
Write the set of values of a for which f(x) = cos x + a2 x + b is strictly increasing on R ?
The function f(x) = cot−1 x + x increases in the interval
If the function f(x) = 2x2 − kx + 5 is increasing on [1, 2], then k lies in the interval
Let f(x) = x3 + ax2 + bx + 5 sin2x be an increasing function on the set R. Then, a and b satisfy.
Function f(x) = 2x3 − 9x2 + 12x + 29 is monotonically decreasing when
In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is
The function f(x) = −x/2 + sin x defined on [−π/3, π/3] is
The function f(x) = x9 + 3x7 + 64 is increasing on
If x = cos2 θ and y = cot θ then find `dy/dx at θ=pi/4`
Find `dy/dx,if e^x+e^y=e^(x-y)`
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).
Find MPC ( Marginal propensity to Consume ) and APC ( Average Propensity to Consume ) if the expenditure Ec of a person with income I is given as Ec = ( 0.0003 ) I2 + ( 0.075 ) I when I = 1000.
If the demand function is D = 50 - 3p - p2, find the elasticity of demand at (a) p = 5 (b) p = 2 , Interpret your result.
Find the values of x for which the following functions are strictly decreasing : f(x) = `x + (25)/x`
Find the values of x for which the following functions are strictly decreasing : f(x) = x3 – 9x2 + 24x + 12
Find the values of x for which f(x) = `x/(x^2 + 1)` is (a) strictly increasing (b) decreasing.
Choose the correct option from the given alternatives :
Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly decreasing in ______.
Find the value of x, such that f(x) is decreasing function.
f(x) = 2x3 - 15x2 - 144x - 7
Find the value of x, such that f(x) is decreasing function.
f(x) = 2x3 – 15x2 – 84x – 7
Find the value of x such that f(x) is decreasing function.
f(x) = x4 − 2x3 + 1
For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the values of x for which Revenue is increasing.
Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing
Find the values of x for which f(x) = 2x3 – 15x2 – 144x – 7 is
(a) Strictly increasing
(b) strictly decreasing
Find the values of x such that f(x) = 2x3 – 15x2 + 36x + 1 is increasing function
By completing the following activity, find the values of x such that f(x) = 2x3 – 15x2 – 84x – 7 is decreasing function.
Solution: f(x) = 2x3 – 15x2 – 84x – 7
∴ f'(x) = `square`
∴ f'(x) = 6`(square) (square)`
Since f(x) is decreasing function.
∴ f'(x) < 0
Case 1: `(square)` > 0 and (x + 2) < 0
∴ x ∈ `square`
Case 2: `(square)` < 0 and (x + 2) > 0
∴ x ∈ `square`
∴ f(x) is decreasing function if and only if x ∈ `square`
For every value of x, the function f(x) = `1/"a"^x`, a > 0 is ______.
The function f(x) = x3 - 3x is ______.
The sides of a square are increasing at the rate of 0.2 cm/sec. When the side is 25cm long, its area is increasing at the rate of ______
The function f(x) = sin x + 2x is ______
For which interval the given function f(x) = 2x3 – 9x2 + 12x + 7 is increasing?
If f(x) = `x^(3/2) (3x - 10)`, x ≥ 0, then f(x) is increasing in ______.
Show that f(x) = tan–1(sinx + cosx) is an increasing function in `(0, pi/4)`
The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.
Let the f : R → R be defined by f (x) = 2x + cosx, then f : ______.
Which of the following functions is decreasing on `(0, pi/2)`?
In case of decreasing functions, slope of tangent and hence derivative is ____________.
The function f (x) = 2 – 3 x is ____________.
The function f(x) = tan-1 x is ____________.
In `(0, pi/2),` the function f (x) = `"x"/"sin x"` is ____________.
The function f(x) = x3 + 6x2 + (9 + 2k)x + 1 is strictly increasing for all x, if ____________.
Show that function f(x) = tan x is increasing in `(0, π/2)`.
State whether the following statement is true or false.
If f'(x) > 0 for all x ∈ (a, b) then f(x) is decreasing function in the interval (a, b).
Function f(x) = `log(1 + x) - (2x)/(2 + x)` is monotonically increasing when ______.
Let f(x) = `x/sqrt(a^2 + x^2) - (d - x)/sqrt(b^2 + (d - x)^2), x ∈ R` where a, b and d are non-zero real constants. Then ______.
If f(x) = `x/(x^2 + 1)` is increasing function then the value of x lies in ______.
The function f(x) = x3 + 3x is increasing in interval ______.
The intevral in which the function f(x) = 5 + 36x – 3x2 increases will be ______.