मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Prove that y = θθθ4sinθ2+cosθ-θ is an increasing function if θθ∈[0,π2] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Prove that y = `(4sinθ)/(2 + cosθ) - θ` is an increasing function if `θ ∈[0, pi/2]`

बेरीज

उत्तर

y = `(4sinθ)/(2 + cosθ) - θ`

∴ `dy/"dθ" = d/"dθ"[(4sinθ)/(2 + cosθ) - θ]`

= `d/"dθ"((4sinθ)/(2 + cosθ)) - d/"dθ"(θ)`

= `((2 + cosθ).d/"dθ"(4sinθ) - 4sinθ.d/"dθ"(2 + cos θ))/((2 + cosθ)^2) - 1`

= `((2 + cosθ)"(4cosθ) - (4sinθ)(0 - sinθ))/((2 + cosθ)^2) - 1`

= `(8cosθ + 4cos^2θ + 4sin^2θ)/(2 + cosθ)^2 - 1`

= `(8cosθ + 4(cos^2θ + sin^2θ))/(2 + cosθ)^2 - 1`

= `(8cosθ + 4)/(2 + cosθ)^2 - 1`

= `((8cos θ + 4) - (2 + cosθ)^2)/(2 + cosθ)^2`

= `(8cosθ + 4 - 4 - 4cosθ - cos^2θ)/(2 + cosθ)^2`

= `(4cosθ - cos^2θ)/(2 + cosθ)^2`

= `(cosθ(4 - cosθ))/(2 + cosθ)^2`

Since, `θ ∈ [0, pi/2], cos θ ≥ 0` Also, cos θ < 4

∴ 4 - cos θ > 0

∴ cos θ (4 - cosθ) ≥ 0

∴ `(cosθ(4 - cosθ))/(2 + cosθ^2)≥ 0`

∴ `dy/"dθ" ≥ 0  "for all"  θ ∈[0, pi/2]`    

Hence, y is an increasing function if `θ ∈[0, pi/2]`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Applications of Derivatives - Exercise 2.4 [पृष्ठ ९०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 2 Applications of Derivatives
Exercise 2.4 | Q 24 | पृष्ठ ९०

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Price P for demand D is given as P = 183 +120D - 3D2 Find D for which the price is increasing


The side of an equilateral triangle is increasing at the rate of 2 cm/s. At what rate is its area increasing when the side of the triangle is 20 cm ?


Find the intervals in which the function f given by f(x) = 2x3 − 3x2 − 36x + 7 is

  1. Strictly increasing
  2. Strictly decreasing

Prove that the logarithmic function is strictly increasing on (0, ∞).


Prove that the function f given by f(x) = x2 − x + 1 is neither strictly increasing nor strictly decreasing on (−1, 1).


Find the least value of a such that the function f given by f (x) = x2 + ax + 1 is strictly increasing on [1, 2].


The interval in which y = x2 e–x is increasing is ______.


Find the intervals in which the function f given by `f(x) = (4sin x - 2x - x cos x)/(2 + cos x)` is (i) increasing (ii) decreasing.


Prove that the function f(x) = loga x is increasing on (0, ∞) if a > 1 and decreasing on (0, ∞), if 0 < a < 1 ?


Show that f(x) = \[\frac{1}{x}\] is a decreasing function on (0, ∞) ?


Without using the derivative show that the function f (x) = 7x − 3 is strictly increasing function on R ?


Find the interval in which the following function are increasing or decreasing  f(x) = x2 + 2x − 5  ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = 3 x^4 - 4 x^3 - 12 x^2 + 5\] ?


Show that f(x) = loga x, 0 < a < 1 is a decreasing function for all x > 0 ?


Show that f(x) = sin x is increasing on (0, π/2) and decreasing on (π/2, π) and neither increasing nor decreasing in (0, π) ?


Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π) ?


Show that f(x) = tan x is an increasing function on (−π/2, π/2) ?


Show that f(x) = tan−1 (sin x + cos x) is a decreasing function on the interval (π/4, π/2) ?


State when a function f(x) is said to be increasing on an interval [a, b]. Test whether the function f(x) = x2 − 6x + 3 is increasing on the interval [4, 6] ?


Find the intervals in which f(x) = (x + 2) e−x is increasing or decreasing ?


Show that f(x) = x2 − x sin x is an increasing function on (0, π/2) ?


Find the values of b for which the function f(x) = sin x − bx + c is a decreasing function on R ?


Find the interval in which f(x) is increasing or decreasing f(x) = x|x|, x \[\in\] R ?


Write the set of values of k for which f(x) = kx − sin x is increasing on R ?


State whether f(x) = tan x − x is increasing or decreasing its domain ?


Write the set of values of a for which f(x) = cos x + a2 x + b is strictly increasing on R ?


The function f(x) = cot−1 x + x increases in the interval


If the function f(x) = 2x2 − kx + 5 is increasing on [1, 2], then k lies in the interval


Let f(x) = x3 + ax2 + bx + 5 sin2x be an increasing function on the set R. Then, a and b satisfy.


Function f(x) = 2x3 − 9x2 + 12x + 29 is monotonically decreasing when


In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is


The function f(x) = −x/2 + sin x defined on [−π/3, π/3] is


The function f(x) = x9 + 3x7 + 64 is increasing on


If x = cos2 θ and y = cot θ then find `dy/dx  at  θ=pi/4` 


Find `dy/dx,if e^x+e^y=e^(x-y)`


Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).


Find MPC ( Marginal propensity to Consume ) and APC ( Average Propensity to Consume ) if the expenditure Ec of a person with income I is given as Ec = ( 0.0003 ) I2 + ( 0.075 ) I when I = 1000.


If the demand function is D = 50 - 3p - p2, find the elasticity of demand at (a) p = 5 (b) p = 2 ,  Interpret your result. 


Find the values of x for which the following functions are strictly decreasing : f(x) = `x + (25)/x`


Find the values of x for which the following functions are strictly decreasing : f(x) = x3 – 9x2 + 24x + 12


Find the values of x for which f(x) = `x/(x^2 + 1)` is (a) strictly increasing (b) decreasing.


Choose the correct option from the given alternatives :

Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly decreasing in ______.


Find the value of x, such that f(x) is decreasing function.

f(x) = 2x3 - 15x2 - 144x - 7 


Find the value of x, such that f(x) is decreasing function.

f(x) = 2x3 – 15x2 – 84x – 7 


Find the value of x such that f(x) is decreasing function.

f(x) = x4 − 2x3 + 1


For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the values of x for which Revenue is increasing.


Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing


Find the values of x for which f(x) = 2x3 – 15x2 – 144x – 7 is

(a) Strictly increasing
(b) strictly decreasing


Find the values of x such that f(x) = 2x3 – 15x2 + 36x + 1 is increasing function


By completing the following activity, find the values of x such that f(x) = 2x3 – 15x2 – 84x – 7 is decreasing function.

Solution: f(x) = 2x3 – 15x2 – 84x – 7

∴ f'(x) = `square`

∴ f'(x) = 6`(square) (square)`

Since f(x) is decreasing function.

∴ f'(x) < 0

Case 1: `(square)` > 0 and (x + 2) < 0

∴ x ∈ `square`

Case 2: `(square)` < 0 and (x + 2) > 0

∴ x ∈ `square`

∴ f(x) is decreasing function if and only if x ∈ `square`


For every value of x, the function f(x) = `1/"a"^x`, a > 0 is ______.


The function f(x) = x3 - 3x is ______.


The sides of a square are increasing at the rate of 0.2 cm/sec. When the side is 25cm long, its area is increasing at the rate of ______


The function f(x) = sin x + 2x is ______ 


For which interval the given function f(x) = 2x3 – 9x2 + 12x + 7 is increasing?


If f(x) = `x^(3/2) (3x - 10)`, x ≥ 0, then f(x) is increasing in ______.


Show that f(x) = tan–1(sinx + cosx) is an increasing function in `(0, pi/4)`


The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.


Let the f : R → R be defined by f (x) = 2x + cosx, then f : ______.


Which of the following functions is decreasing on `(0, pi/2)`?


In case of decreasing functions, slope of tangent and hence derivative is ____________.


The function f (x) = 2 – 3 x is ____________.


The function f(x) = tan-1 x is ____________.


In `(0, pi/2),`  the function f (x) = `"x"/"sin x"` is ____________.


The function f(x) = x3 + 6x2 + (9 + 2k)x + 1 is strictly increasing for all x, if ____________.


Show that function f(x) = tan x is increasing in `(0, π/2)`.


State whether the following statement is true or false.

If f'(x) > 0 for all x ∈ (a, b) then f(x) is decreasing function in the interval (a, b).


Function f(x) = `log(1 + x) - (2x)/(2 + x)` is monotonically increasing when ______.


Let f(x) = `x/sqrt(a^2 + x^2) - (d - x)/sqrt(b^2 + (d - x)^2), x ∈ R` where a, b and d are non-zero real constants. Then ______.


If f(x) = `x/(x^2 + 1)` is increasing function then the value of x lies in ______.


The function f(x) = x3 + 3x is increasing in interval ______.


The intevral in which the function f(x) = 5 + 36x – 3x2 increases will be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×