Advertisements
Advertisements
Question
Prove that y = `(4sinθ)/(2 + cosθ) - θ` is an increasing function if `θ ∈[0, pi/2]`
Solution
y = `(4sinθ)/(2 + cosθ) - θ`
∴ `dy/"dθ" = d/"dθ"[(4sinθ)/(2 + cosθ) - θ]`
= `d/"dθ"((4sinθ)/(2 + cosθ)) - d/"dθ"(θ)`
= `((2 + cosθ).d/"dθ"(4sinθ) - 4sinθ.d/"dθ"(2 + cos θ))/((2 + cosθ)^2) - 1`
= `((2 + cosθ)"(4cosθ) - (4sinθ)(0 - sinθ))/((2 + cosθ)^2) - 1`
= `(8cosθ + 4cos^2θ + 4sin^2θ)/(2 + cosθ)^2 - 1`
= `(8cosθ + 4(cos^2θ + sin^2θ))/(2 + cosθ)^2 - 1`
= `(8cosθ + 4)/(2 + cosθ)^2 - 1`
= `((8cos θ + 4) - (2 + cosθ)^2)/(2 + cosθ)^2`
= `(8cosθ + 4 - 4 - 4cosθ - cos^2θ)/(2 + cosθ)^2`
= `(4cosθ - cos^2θ)/(2 + cosθ)^2`
= `(cosθ(4 - cosθ))/(2 + cosθ)^2`
Since, `θ ∈ [0, pi/2], cos θ ≥ 0` Also, cos θ < 4
∴ 4 - cos θ > 0
∴ cos θ (4 - cosθ) ≥ 0
∴ `(cosθ(4 - cosθ))/(2 + cosθ^2)≥ 0`
∴ `dy/"dθ" ≥ 0 "for all" θ ∈[0, pi/2]`
Hence, y is an increasing function if `θ ∈[0, pi/2]`.
APPEARS IN
RELATED QUESTIONS
The side of an equilateral triangle is increasing at the rate of 2 cm/s. At what rate is its area increasing when the side of the triangle is 20 cm ?
Find the value(s) of x for which y = [x(x − 2)]2 is an increasing function.
Find the value of c in Rolle's theorem for the function `f(x) = x^3 - 3x " in " (-sqrt3, 0)`
Find the intervals in which the following functions are strictly increasing or decreasing:
x2 + 2x − 5
Find the values of x for `y = [x(x - 2)]^2` is an increasing function.
Prove that y = `(4sin theta)/(2 + cos theta) - theta` is an increasing function of θ in `[0, pi/2]`
Find the least value of a such that the function f given by f (x) = x2 + ax + 1 is strictly increasing on [1, 2].
Prove that the function f given by f(x) = log sin x is strictly increasing on `(0, pi/2)` and strictly decreasing on `(pi/2, pi)`
Prove that the function f(x) = loga x is increasing on (0, ∞) if a > 1 and decreasing on (0, ∞), if 0 < a < 1 ?
Prove that f(x) = ax + b, where a, b are constants and a < 0 is a decreasing function on R ?
Find the interval in which the following function are increasing or decreasing f(x) = x2 + 2x − 5 ?
Find the interval in which the following function are increasing or decreasing f(x) = 6 − 9x − x2 ?
Find the interval in which the following function are increasing or decreasing f(x) = 8 + 36x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing f(x) = 5x3 − 15x2 − 120x + 3 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 24x + 7 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{x^4}{4} + \frac{2}{3} x^3 - \frac{5}{2} x^2 - 6x + 7\] ?
Find the intervals in which f(x) = sin x − cos x, where 0 < x < 2π is increasing or decreasing ?
Show that f(x) = loga x, 0 < a < 1 is a decreasing function for all x > 0 ?
Show that f(x) = x9 + 4x7 + 11 is an increasing function for all x ∈ R ?
Prove that the function f(x) = x3 − 6x2 + 12x − 18 is increasing on R ?
Show that f(x) = tan−1 x − x is a decreasing function on R ?
Prove that the function f given by f(x) = x − [x] is increasing in (0, 1) ?
Find the value(s) of a for which f(x) = x3 − ax is an increasing function on R ?
Show that f(x) = x + cos x − a is an increasing function on R for all values of a ?
Find the interval in which f(x) is increasing or decreasing f(x) = x|x|, x \[\in\] R ?
Write the set of values of 'a' for which f(x) = loga x is increasing in its domain ?
Find 'a' for which f(x) = a (x + sin x) + a is increasing on R ?
Write the set of values of a for which the function f(x) = ax + b is decreasing for all x ∈ R ?
State whether f(x) = tan x − x is increasing or decreasing its domain ?
Write the set of values of a for which f(x) = cos x + a2 x + b is strictly increasing on R ?
The interval of increase of the function f(x) = x − ex + tan (2π/7) is
Every invertible function is
In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is
If the function f(x) = cos |x| − 2ax + b increases along the entire number scale, then
The function \[f\left( x \right) = \frac{x}{1 + \left| x \right|}\] is
If the function f(x) = x3 − 9kx2 + 27x + 30 is increasing on R, then
The function f(x) = x9 + 3x7 + 64 is increasing on
If x = cos2 θ and y = cot θ then find `dy/dx at θ=pi/4`
The consumption expenditure Ec of a person with the income x. is given by Ec = 0.0006x2 + 0.003x. Find MPC, MPS, APC and APS when the income x = 200.
Find `dy/dx,if e^x+e^y=e^(x-y)`
Using truth table show that ∼ (p → ∼ q) ≡ p ∧ q
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).
Find the intervals in which function f given by f(x) = 4x3 - 6x2 - 72x + 30 is (a) strictly increasing, (b) strictly decresing .
The edge of a cube is decreasing at the rate of`( 0.6"cm")/sec`. Find the rate at which its volume is decreasing, when the edge of the cube is 2 cm.
Test whether the following functions are increasing or decreasing : f(x) = x3 – 6x2 + 12x – 16, x ∈ R.
Test whether the following functions are increasing or decreasing : f(x) = `(1)/x`, x ∈ R , x ≠ 0.
Find the values of x for which the following func- tions are strictly increasing : f(x) = x3 – 6x2 – 36x + 7
show that f(x) = `3x + (1)/(3x)` is increasing in `(1/3, 1)` and decreasing in `(1/9, 1/3)`.
Solve the following : Find the intervals on which the function y = xx, (x > 0) is increasing and decreasing.
Show that function f(x) =`("x - 2")/("x + 1")`, x ≠ -1 is increasing.
Prove that function f(x) = `x - 1/x`, x ∈ R and x ≠ 0 is increasing function
Find the values of x, for which the function f(x) = x3 + 12x2 + 36𝑥 + 6 is monotonically decreasing
If the function f(x) = `7/x - 3`, x ∈ R, x ≠ 0 is a decreasing function, then x ∈ ______
State whether the following statement is True or False:
If the function f(x) = x2 + 2x – 5 is an increasing function, then x < – 1
Find the values of x such that f(x) = 2x3 – 15x2 + 36x + 1 is increasing function
In which interval is the given function, f(x) = 2x3 - 21x2 + 72x + 19 monotonically decreasing?
The values of k for which the function f(x) = kx3 – 6x2 + 12x + 11 may be increasing on R are ______.
The function `1/(1 + x^2)` is increasing in the interval ______
Prove that the function f(x) = tanx – 4x is strictly decreasing on `((-pi)/3, pi/3)`
Show that f(x) = tan–1(sinx + cosx) is an increasing function in `(0, pi/4)`
The function f(x) = 4 sin3x – 6 sin2x + 12 sinx + 100 is strictly ______.
The function f (x) = x2, for all real x, is ____________.
Let `"f (x) = x – cos x, x" in "R"`, then f is ____________.
In `(0, pi/2),` the function f (x) = `"x"/"sin x"` is ____________.
Let f (x) = tan x – 4x, then in the interval `[- pi/3, pi/3], "f"("x")` is ____________.
Function given by f(x) = sin x is strictly increasing in.
The interval in which `y = x^2e^(-x)` is increasing with respect to `x` is
Find the value of x for which the function f(x)= 2x3 – 9x2 + 12x + 2 is decreasing.
Given f(x) = 2x3 – 9x2 + 12x + 2
∴ f'(x) = `squarex^2 - square + square`
∴ f'(x) = `6(x - 1)(square)`
Now f'(x) < 0
∴ 6(x – 1)(x – 2) < 0
Since ab < 0 ⇔a < 0 and b < 0 or a > 0 and b < 0
Case 1: (x – 1) < 0 and (x – 2) < 0
∴ x < `square` and x > `square`
Which is contradiction
Case 2: x – 1 and x – 2 < 0
∴ x > `square` and x < `square`
1 < `square` < 2
f(x) is decreasing if and only if x ∈ `square`
Let f: [0, 2]→R be a twice differentiable function such that f"(x) > 0, for all x ∈( 0, 2). If `phi` (x) = f(x) + f(2 – x), then `phi` is ______.
The function f(x) = `|x - 1|/x^2` is monotonically decreasing on ______.
y = log x satisfies for x > 1, the inequality ______.
Let f : R `rightarrow` R be a positive increasing function with `lim_(x rightarrow ∞) (f(3x))/(f(x))` = 1 then `lim_(x rightarrow ∞) (f(2x))/(f(x))` = ______.
The function f(x) = tan–1(sin x + cos x) is an increasing function in ______.
The function f(x) = sin4x + cos4x is an increasing function if ______.