Advertisements
Advertisements
Question
The interval of increase of the function f(x) = x − ex + tan (2π/7) is
Options
(0, ∞)
(−∞, 0)
(1, ∞)
(−∞, 1)
Solution
(−∞, 0)
\[f\left( x \right) = x - e^x + \tan\left( \frac{2\pi}{7} \right)\]
\[f'\left( x \right) = 1 - e^x \]
\[\text { For f(x) to be increasing, we must have }\]
\[f'\left( x \right) > 0\]
\[ \Rightarrow 1 - e^x > 0\]
\[ \Rightarrow e^x < 1\]
\[ \Rightarrow x < 0\]
\[ \Rightarrow x \in \left( - \infty , 0 \right)\]
\[\text { So,f(x) is increasing on } \left( - \infty , 0 \right) .\]
APPEARS IN
RELATED QUESTIONS
The amount of pollution content added in air in a city due to x-diesel vehicles is given by P(x) = 0.005x3 + 0.02x2 + 30x. Find the marginal increase in pollution content when 3 diesel vehicles are added and write which value is indicated in the above question.
Prove that y = `(4sin theta)/(2 + cos theta) - theta` is an increasing function of θ in `[0, pi/2]`
Prove that the logarithmic function is strictly increasing on (0, ∞).
Let I be any interval disjoint from (−1, 1). Prove that the function f given by `f(x) = x + 1/x` is strictly increasing on I.
Let f be a function defined on [a, b] such that f '(x) > 0, for all x ∈ (a, b). Then prove that f is an increasing function on (a, b).
Without using the derivative, show that the function f (x) = | x | is.
(a) strictly increasing in (0, ∞)
(b) strictly decreasing in (−∞, 0) .
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 15x2 + 36x + 1 ?
Find the interval in which the following function are increasing or decreasing f(x) = −2x3 − 9x2 − 12x + 1 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{x^4}{4} + \frac{2}{3} x^3 - \frac{5}{2} x^2 - 6x + 7\] ?
Find the interval in which the following function are increasing or decreasing f(x) = \[5 x^\frac{3}{2} - 3 x^\frac{5}{2}\] x > 0 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = 3 x^4 - 4 x^3 - 12 x^2 + 5\] ?
Show that f(x) = sin x is an increasing function on (−π/2, π/2) ?
Show that f(x) = (x − 1) ex + 1 is an increasing function for all x > 0 ?
Determine whether f(x) = −x/2 + sin x is increasing or decreasing on (−π/3, π/3) ?
Find the intervals in which f(x) = (x + 2) e−x is increasing or decreasing ?
Prove that the function f given by f(x) = x − [x] is increasing in (0, 1) ?
Find the set of values of 'a' for which f(x) = x + cos x + ax + b is increasing on R ?
Write the set of values of k for which f(x) = kx − sin x is increasing on R ?
The function f(x) = cot−1 x + x increases in the interval
Let f(x) = x3 − 6x2 + 15x + 3. Then,
In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is
Function f(x) = loga x is increasing on R, if
The radius r of a right circular cylinder is increasing uniformly at the rate of 0·3 cm/s and its height h is decreasing at the rate of 0·4 cm/s. When r = 3·5 cm and h = 7 cm, find the rate of change of the curved surface area of the cylinder. \[\left[ \text{ Use } \pi = \frac{22}{7} \right]\]
Prove that y = `(4sinθ)/(2 + cosθ) - θ` is an increasing function if `θ ∈[0, pi/2]`
Test whether the following function is increasing or decreasing.
f(x) = `7/"x" - 3`, x ∈ R, x ≠ 0
Prove that function f(x) = `x - 1/x`, x ∈ R and x ≠ 0 is increasing function
If the function f(x) = `7/x - 3`, x ∈ R, x ≠ 0 is a decreasing function, then x ∈ ______
Show that the function f(x) = `(x - 2)/(x + 1)`, x ≠ – 1 is increasing
A man of height 1.9 m walks directly away from a lamp of height 4.75m on a level road at 6m/s. The rate at which the length of his shadow is increasing is
If f(x) = [x], where [x] is the greatest integer not greater than x, then f'(1') = ______.
Show that for a ≥ 1, f(x) = `sqrt(3)` sinx – cosx – 2ax + b ∈ is decreasing in R
The function f (x) = 2 – 3 x is ____________.
Let f (x) = tan x – 4x, then in the interval `[- pi/3, pi/3], "f"("x")` is ____________.
The function which is neither decreasing nor increasing in `(pi/2,(3pi)/2)` is ____________.
State whether the following statement is true or false.
If f'(x) > 0 for all x ∈ (a, b) then f(x) is decreasing function in the interval (a, b).
If f(x) = `x - 1/x`, x∈R, x ≠ 0 then f(x) is increasing.
Let f: [0, 2]→R be a twice differentiable function such that f"(x) > 0, for all x ∈( 0, 2). If `phi` (x) = f(x) + f(2 – x), then `phi` is ______.
Let f : R `rightarrow` R be a positive increasing function with `lim_(x rightarrow ∞) (f(3x))/(f(x))` = 1 then `lim_(x rightarrow ∞) (f(2x))/(f(x))` = ______.
In which one of the following intervals is the function f(x) = x3 – 12x increasing?