Advertisements
Advertisements
Question
Let f(x) = x3 − 6x2 + 15x + 3. Then,
Options
f(x) > 0 for all x ∈ R
f(x) > f(x + 1) for all x ∈ R
f(x) is invertible
none of these
Solution
f(x) is invertible
f(x) =x3 − 6x2 + 15x + 3
\[f'(x) = 3 x^2 - 12x + 15\]
\[ = 3\left( x^2 - 4x + 5 \right)\]
\[ = 3\left( x^2 - 4x + 4 + 1 \right)\]
\[ = 3 \left( x - 2 \right)^2 + \frac{1}{3} > 0\]
\[\text { Therefore, f(x) is strictly increasing function }. \]
\[ \Rightarrow f^{- 1} (x) \text { exists } . \]
\[\text { Hence, f(x) is an invertible function } .\]
APPEARS IN
RELATED QUESTIONS
Price P for demand D is given as P = 183 +120D - 3D2 Find D for which the price is increasing
The amount of pollution content added in air in a city due to x-diesel vehicles is given by P(x) = 0.005x3 + 0.02x2 + 30x. Find the marginal increase in pollution content when 3 diesel vehicles are added and write which value is indicated in the above question.
Find the intervals in which f(x) = sin 3x – cos 3x, 0 < x < π, is strictly increasing or strictly decreasing.
The side of an equilateral triangle is increasing at the rate of 2 cm/s. At what rate is its area increasing when the side of the triangle is 20 cm ?
Test whether the function is increasing or decreasing.
f(x) = `"x" -1/"x"`, x ∈ R, x ≠ 0,
Find the intervals in which the following functions are strictly increasing or decreasing:
(x + 1)3 (x − 3)3
Without using the derivative show that the function f (x) = 7x − 3 is strictly increasing function on R ?
Find the interval in which the following function are increasing or decreasing f(x) = 10 − 6x − 2x2 ?
Find the interval in which the following function are increasing or decreasing f(x) = 5x3 − 15x2 − 120x + 3 ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 12x2 + 36x + 17 ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 + 9x + 15 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \left\{ x(x - 2) \right\}^2\] ?
Show that f(x) = sin x is an increasing function on (−π/2, π/2) ?
Show that the function f(x) = sin (2x + π/4) is decreasing on (3π/8, 5π/8) ?
Show that the function f(x) = cot \[-\] l(sinx + cosx) is decreasing on \[\left( 0, \frac{\pi}{4} \right)\] and increasing on \[\left( 0, \frac{\pi}{4} \right)\] ?
Prove that the following function is increasing on R f \[f\left( x \right) = 4 x^3 - 18 x^2 + 27x - 27\] ?
What are the values of 'a' for which f(x) = ax is decreasing on R ?
Write the interval in which f(x) = sin x + cos x, x ∈ [0, π/2] is increasing ?
Write the set of values of a for which f(x) = cos x + a2 x + b is strictly increasing on R ?
If the function f(x) = kx3 − 9x2 + 9x + 3 is monotonically increasing in every interval, then
Find the intervals in which the function `f("x") = (4sin"x")/(2+cos"x") -"x";0≤"x"≤2pi` is strictly increasing or strictly decreasing.
Show that f(x) = x – cos x is increasing for all x.
Show that y = `log (1 + x) – (2x)/(2 + x), x > - 1` is an increasing function on its domain.
Find the value of x, such that f(x) is increasing function.
f(x) = 2x3 - 15x2 - 144x - 7
Prove that function f(x) = `x - 1/x`, x ∈ R and x ≠ 0 is increasing function
Find the values of x for which the function f(x) = 2x3 – 6x2 + 6x + 24 is strictly increasing
State whether the following statement is True or False:
If the function f(x) = x2 + 2x – 5 is an increasing function, then x < – 1
The function `1/(1 + x^2)` is increasing in the interval ______
Show that f(x) = 2x + cot–1x + `log(sqrt(1 + x^2) - x)` is increasing in R
The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.
The values of a for which the function f(x) = sinx – ax + b increases on R are ______.
In `(0, pi/2),` the function f (x) = `"x"/"sin x"` is ____________.
`"f"("x") = (("e"^(2"x") - 1)/("e"^(2"x") + 1))` is ____________.
The function f(x) = `(4x^3 - 3x^2)/6 - 2sinx + (2x - 1)cosx` ______.
The function f(x) = tan–1(sin x + cos x) is an increasing function in ______.
Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly increasing in ______.