Advertisements
Advertisements
Question
Show that the function f(x) = cot \[-\] l(sinx + cosx) is decreasing on \[\left( 0, \frac{\pi}{4} \right)\] and increasing on \[\left( 0, \frac{\pi}{4} \right)\] ?
Solution
\[\text { We have,} \]
\[f\left( x \right) = \cot^{- 1} \left( \sin x + \cos x \right)\]
\[ \Rightarrow f'\left( x \right) = \frac{- 1}{1 + \left( \sin x + \cos x \right)^2} \times \left( \cos x - \sin x \right)\]
\[ = \frac{\sin x - \cos x}{1 + \sin^2 x + \cos^2 x + 2\sin x\cos x}\]
\[ = \frac{\sin x - \cos x}{1 + 1 + 2\sin x\cos x}\]
\[ = \frac{\sin x - \cos x}{2 + 2\sin x\cos x}\]
\[ = \frac{1}{2} \times \frac{\sin x - \cos x}{1 + \sin x\cos x}\]
\[\text { For } f\left( x \right) \text { to be decreasing, we must have }\]
\[f'\left( x \right) < 0\]
\[ \Rightarrow \frac{1}{2} \times \frac{\sin x - \cos x}{1 + \sin x\cos x} < 0\]
\[ \Rightarrow \frac{\sin x - \cos x }{1 + \sin x\cos x} < 0\]
\[ \Rightarrow \sin x - \cos x < 0 \left( \text { In first quadrant } \right)\]
\[ \Rightarrow \sin x < \cos x\]
\[ \Rightarrow \tan x < 1\]
\[ \Rightarrow 0 < x < \frac{\pi}{4}\]
\[So, f\left( x \right) \text { is decreasing on } \left( 0, \frac{\pi}{4} \right) . \]
\[\text { For } f\left( x \right) \text { to be increasing, we must have } \]
\[f'\left( x \right) > 0\]
\[ \Rightarrow \frac{1}{2} \times \frac{\sin x - \cos x}{1 + \sin x\cos x} > 0\]
\[ \Rightarrow \frac{\sin x - \cos x}{1 + \sin x\cos x} > 0\]
\[ \Rightarrow \sin x - \cos x > 0 \left(\text { In first quadrant } \right)\]
\[ \Rightarrow \sin x > \cos x\]
\[ \Rightarrow \tan x > 1\]
\[ \Rightarrow \frac{\pi}{4} < x < \frac{\pi}{2}\]
\[\text { So,} f\left( x \right) \text { is increasing on } \left( \frac{\pi}{4}, \frac{\pi}{2} \right) .\]
APPEARS IN
RELATED QUESTIONS
Find the intervals in which the following functions are strictly increasing or decreasing:
x2 + 2x − 5
Find the intervals in which the following functions are strictly increasing or decreasing:
−2x3 − 9x2 − 12x + 1
Find the intervals in which the following functions are strictly increasing or decreasing:
6 − 9x − x2
Prove that the logarithmic function is strictly increasing on (0, ∞).
Find the least value of a such that the function f given by f (x) = x2 + ax + 1 is strictly increasing on [1, 2].
Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.
Find the intervals in which the function `f(x) = x^4/4 - x^3 - 5x^2 + 24x + 12` is (a) strictly increasing, (b) strictly decreasing
Prove that f(x) = ax + b, where a, b are constants and a > 0 is an increasing function on R ?
Prove that f(x) = ax + b, where a, b are constants and a < 0 is a decreasing function on R ?
Show that f(x) = \[\frac{1}{x}\] is a decreasing function on (0, ∞) ?
Find the interval in which the following function are increasing or decreasing f(x) = 6 + 12x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 24x + 107 ?
Show that the function x2 − x + 1 is neither increasing nor decreasing on (0, 1) ?
Show that f(x) = x9 + 4x7 + 11 is an increasing function for all x ∈ R ?
Prove that the function f given by f(x) = x − [x] is increasing in (0, 1) ?
Prove that the function f given by f(x) = log cos x is strictly increasing on (−π/2, 0) and strictly decreasing on (0, π/2) ?
State whether f(x) = tan x − x is increasing or decreasing its domain ?
The function \[f\left( x \right) = \log_e \left( x^3 + \sqrt{x^6 + 1} \right)\] is of the following types:
Function f(x) = cos x − 2 λ x is monotonic decreasing when
Let ϕ(x) = f(x) + f(2a − x) and f"(x) > 0 for all x ∈ [0, a]. Then, ϕ (x)
If the function f(x) = x3 − 9kx2 + 27x + 30 is increasing on R, then
Find the intervals in which the function \[f(x) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] is
(a) strictly increasing
(b) strictly decreasing
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).
The total cost of manufacturing x articles is C = 47x + 300x2 − x4. Find x, for which average cost is increasing.
If the demand function is D = 50 - 3p - p2, find the elasticity of demand at (a) p = 5 (b) p = 2 , Interpret your result.
Solve the following : Find the intervals on which the function y = xx, (x > 0) is increasing and decreasing.
Find the value of x, such that f(x) is increasing function.
f(x) = x2 + 2x - 5
Find the value of x, such that f(x) is increasing function.
f(x) = 2x3 - 15x2 - 144x - 7
Find the value of x such that f(x) is decreasing function.
f(x) = x4 − 2x3 + 1
A man of height 1.9 m walks directly away from a lamp of height 4.75m on a level road at 6m/s. The rate at which the length of his shadow is increasing is
The function f(x) = x3 - 3x is ______.
If f(x) = x3 – 15x2 + 84x – 17, then ______.
The function f(x) = tan-1 x is ____________.
Let x0 be a point in the domain of definition of a real valued function `f` and there exists an open interval I = (x0 – h, ro + h) containing x0. Then which of the following statement is/ are true for the above statement.
The function f(x) = `(4x^3 - 3x^2)/6 - 2sinx + (2x - 1)cosx` ______.
If f(x) = x5 – 20x3 + 240x, then f(x) satisfies ______.
If f(x) = x + cosx – a then ______.
y = log x satisfies for x > 1, the inequality ______.
Find the interval in which the function f(x) = x2e–x is strictly increasing or decreasing.