English

Solve the following : Find the intervals on which the function y = xx, (x > 0) is increasing and decreasing. - Mathematics and Statistics

Advertisements
Advertisements

Question

Solve the following : Find the intervals on which the function y = xx, (x > 0) is increasing and decreasing.

Sum

Solution

y = x
∴ log y = log xx = x log x
Differentiating both sides w.r.t. x, we get

`(1)/y.dy/dx = d/dx(x log x)`

= `x.d/dx(log x) + (log x).d/dx(x)`

= `x xx (1)/x + (log x) xx 1`

∴ `dy/dx = y(1 + logx)`

= xx(1 + log x)

y is increasing if `dy/dx ≥ 0`

i.e. if xx (1 + log x) ≥ 0
i.e. if 1 + log x ≥ 0                ...[∵ x > 0]
i.e. if log x ≥ – 1
i.e. if log x ≥ – log e            ...[∵ log e = 1]

i.e. if log x ≥ log `(1)/e`

i.e. if x ≥ `(1)/e`

∴ y is increasing in `[1/e, oo)`

y is decreasing if `dy/dx ≤ 0`

i.e. if xx (1 + log x) ≤ 0
i.e. if 1 + log x ≤ 0                ...[∵ x > 0]
i.e. if log x ≤ – 1
i.e. if log x ≤ – log e            ...[∵ log e = 1]

i.e. if log x ≤ log `(1)/e`

i.e. if x ≤ `(1)/e`, where x > 0

∴ y is decreasing is `(0, 1/e]`

Hence, the given function is increasing `[1/e, oo)`

and decreasing in `(0, 1/e]`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Applications of Derivatives - Miscellaneous Exercise 2 [Page 93]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
Chapter 2 Applications of Derivatives
Miscellaneous Exercise 2 | Q 10 | Page 93

RELATED QUESTIONS

Test whether the function is increasing or decreasing. 

f(x) = `"x" -1/"x"`, x ∈ R, x ≠ 0, 


Find the intervals in which the following functions are strictly increasing or decreasing:

10 − 6x − 2x2


Find the intervals in which the following functions are strictly increasing or decreasing:

−2x3 − 9x2 − 12x + 1


Find the values of x for  `y = [x(x - 2)]^2` is an increasing function.


Find the intervals in which the function `f(x) = x^4/4 - x^3 - 5x^2 + 24x + 12`  is (a) strictly increasing, (b) strictly decreasing


Water is dripping out from a conical funnel of semi-verticle angle `pi/4` at the uniform rate of `2 cm^2/sec`in the surface, through a tiny hole at the vertex of the bottom. When the slant height of the water level is 4 cm, find the rate of decrease of the slant height of the water.


Prove that the function f(x) = loge x is increasing on (0, ∞) ?


Prove that the function f(x) = loga x is increasing on (0, ∞) if a > 1 and decreasing on (0, ∞), if 0 < a < 1 ?


Without using the derivative, show that the function f (x) = | x | is.
(a) strictly increasing in (0, ∞)
(b) strictly decreasing in (−∞, 0) .


Find the interval in which the following function are increasing or decreasing  f(x) = x2 + 2x − 5  ?


Find the interval in which the following function are increasing or decreasing  f(x) = 6 − 9x − x2  ?


Find the interval in which the following function are increasing or decreasing f(x) = 5 + 36x + 3x2 − 2x?


Find the interval in which the following function are increasing or decreasing  f(x) = 5x3 − 15x2 − 120x + 3 ?


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 15x2 + 36x + 1 ?


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 + 9x2 + 12x + 20  ?


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 9x2 + 12x − 5 ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{10} x^4 - \frac{4}{5} x^3 - 3 x^2 + \frac{36}{5}x + 11\] ?


Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \left\{ x(x - 2) \right\}^2\] ?


Determine the values of x for which the function f(x) = x2 − 6x + 9 is increasing or decreasing. Also, find the coordinates of the point on the curve y = x2 − 6x + 9 where the normal is parallel to the line y = x + 5 ? 


Show that f(x) = e2x is increasing on R.


Prove that the function f(x) = x3 − 6x2 + 12x − 18 is increasing on R ?


Determine whether f(x) = −x/2 + sin x is increasing or decreasing on (−π/3, π/3) ?


Find the intervals in which f(x) = log (1 + x) −\[\frac{x}{1 + x}\] is increasing or decreasing ?


Find the intervals in which f(x) = (x + 2) e−x is increasing or decreasing ?


Find the values of b for which the function f(x) = sin x − bx + c is a decreasing function on R ?


Let f defined on [0, 1] be twice differentiable such that | f (x) | ≤ 1 for all x ∈ [0, 1]. If f(0) = f(1), then show that | f'(x) | < 1 for all x ∈ [ 0, 1] ?


Write the set of values of k for which f(x) = kx − sin x is increasing on R ?


The function f(x) = xx decreases on the interval


The function \[f\left( x \right) = \log_e \left( x^3 + \sqrt{x^6 + 1} \right)\] is of the following types:


If the function f(x) = 2 tan x + (2a + 1) loge | sec x | + (a − 2) x is increasing on R, then


Let \[f\left( x \right) = \tan^{- 1} \left( g\left( x \right) \right),\],where g (x) is monotonically increasing for 0 < x < \[\frac{\pi}{2} .\] Then, f(x) is


Function f(x) = 2x3 − 9x2 + 12x + 29 is monotonically decreasing when


If the function f(x) = kx3 − 9x2 + 9x + 3 is monotonically increasing in every interval, then


The function f(x) = −x/2 + sin x defined on [−π/3, π/3] is


The function f(x) = x9 + 3x7 + 64 is increasing on


Find the intervals in which the function \[f(x) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] is

(a) strictly increasing
(b) strictly decreasing


If x = cos2 θ and y = cot θ then find `dy/dx  at  θ=pi/4` 


Find `dy/dx,if e^x+e^y=e^(x-y)`


Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).


Test whether the following functions are increasing or decreasing : f(x) = x3 – 6x2 + 12x – 16, x ∈ R.


Test whether the following functions are increasing or decreasing : f(x) = 2 – 3x + 3x2 – x3, x ∈ R.


Find the values of x for which the following functions are strictly increasing : f(x) = 2x3 – 3x2 – 12x + 6


Find the values of x for which the following functions are strictly decreasing : f(x) = x3 – 9x2 + 24x + 12


Find the values of x for which f(x) = `x/(x^2 + 1)` is (a) strictly increasing (b) decreasing.


Find the value of x, such that f(x) is decreasing function.

f(x) = 2x3 - 15x2 - 144x - 7 


For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the values of x for which Revenue is increasing.


Show that function f(x) =`("x - 2")/("x + 1")`, x ≠ -1 is increasing.


Test whether the following function f(x) = 2 – 3x + 3x2 – x3, x ∈ R is increasing or decreasing


Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing


Find the values of x, for which the function f(x) = x3 + 12x2 + 36𝑥 + 6 is monotonically decreasing


The slope of tangent at any point (a, b) is also called as ______.


The function f(x) = `x - 1/x`, x ∈ R, x ≠ 0 is increasing


The function f(x) = 9 - x5 - x7 is decreasing for


For every value of x, the function f(x) = `1/"a"^x`, a > 0 is ______.


The sides of a square are increasing at the rate of 0.2 cm/sec. When the side is 25cm long, its area is increasing at the rate of ______


Given P(x) = x4 + ax3 + bx2 + cx + d such that x = 0 is the only real root of P'(x) = 0. If P(-1) < P(1), then in the interval [-1, 1] ______


If f(x) = `x^(3/2) (3x - 10)`, x ≥ 0, then f(x) is increasing in ______.


Prove that the function f(x) = tanx – 4x is strictly decreasing on `((-pi)/3, pi/3)`


Show that f(x) = 2x + cot–1x + `log(sqrt(1 + x^2) - x)` is increasing in R


In case of decreasing functions, slope of tangent and hence derivative is ____________.


In `(0, pi/2),`  the function f (x) = `"x"/"sin x"` is ____________.


The function `"f"("x") = "x"/"logx"` increases on the interval


Show that function f(x) = tan x is increasing in `(0, π/2)`.


State whether the following statement is true or false.

If f'(x) > 0 for all x ∈ (a, b) then f(x) is decreasing function in the interval (a, b).


Function f(x) = `log(1 + x) - (2x)/(2 + x)` is monotonically increasing when ______.


y = log x satisfies for x > 1, the inequality ______.


The function f(x) = tan–1(sin x + cos x) is an increasing function in ______.


If f(x) = `x/(x^2 + 1)` is increasing function then the value of x lies in ______.


Read the following passage:

The use of electric vehicles will curb air pollution in the long run.

The use of electric vehicles is increasing every year and the estimated electric vehicles in use at any time t is given by the function V:

V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2`

where t represents the time and t = 1, 2, 3, ...... corresponds to years 2001, 2002, 2003, ...... respectively.

Based on the above information, answer the following questions:

  1. Can the above function be used to estimate number of vehicles in the year 2000? Justify. (2)
  2. Prove that the function V(t) is an increasing function. (2)

The interval in which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.


Find the interval/s in which the function f : R `rightarrow` R defined by f(x) = xex, is increasing.


Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly increasing in ______.


Find the interval in which the function f(x) = x2e–x is strictly increasing or decreasing.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×