English

For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the values of x for which Revenue is increasing. - Mathematics and Statistics

Advertisements
Advertisements

Question

For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the values of x for which Revenue is increasing.

Sum

Solution

Revenue = Price × Demand

∴ R = p × x

∴ R = (10800 - 4x2)x

∴ R = 10800x - 4x3

∴ `"dR"/"dx" = 10800 - 12"x"^2`

Since revenue R is an increasing function,

`"dR"/"dx" > 0`

∴ `10800 - 12"x"^2` > 0

∴ 10800 > 12 x2 

∴ `10800/12` > x2

∴ 900 > x2 

∴ x2 < 900

∴ - 30 < x < 30

∴ x > - 30 and x < 30

But x > - 30 is not possible     ....[∵ x > 0]

∴ x < 30

∴ The revenue R is increasing for x < 30.

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Applications of Derivatives - Exercise 4.4 [Page 112]

RELATED QUESTIONS

Find the intervals in which f(x) = sin 3x – cos 3x, 0 < x < π, is strictly increasing or strictly decreasing.


Find the intervals in which the following functions are strictly increasing or decreasing:

6 − 9x − x2


Prove that  y = `(4sin theta)/(2 + cos theta) - theta` is an increasing function of θ in `[0, pi/2]`


Which of the following functions are strictly decreasing on `(0, pi/2)`?

  1. cos x
  2. cos 2x
  3. cos 3x
  4. tan x

On which of the following intervals is the function f given byf(x) = x100 + sin x –1 strictly decreasing?


Prove that the function f(x) = loge x is increasing on (0, ∞) ?


Show that f(x) = \[\frac{1}{1 + x^2}\] decreases in the interval [0, ∞) and increases in the interval (−∞, 0] ?


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 15x2 + 36x + 1 ?


Find the interval in which the following function are increasing or decreasing  f(x) = x4 − 4x3 + 4x2 + 15 ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = 3 x^4 - 4 x^3 - 12 x^2 + 5\] ?


Prove that the function f given by f(x) = x − [x] is increasing in (0, 1) ?


Prove that the function f given by f(x) = log cos x is strictly increasing on (−π/2, 0) and strictly decreasing on (0, π/2) ?


Prove that the function f given by f(x) = x3 − 3x2 + 4x is strictly increasing on R ?


Prove that the function f(x) = cos x is:
(i) strictly decreasing in (0, π)
(ii) strictly increasing in (π, 2π)
(iii) neither increasing nor decreasing in (0, 2π).


Show that f(x) = x2 − x sin x is an increasing function on (0, π/2) ?


Find the interval in which f(x) is increasing or decreasing f(x) = x|x|, x \[\in\] R ?


What are the values of 'a' for which f(x) = ax is decreasing on R ? 


Find 'a' for which f(x) = a (x + sin x) + a is increasing on R ?


Write the set of values of k for which f(x) = kx − sin x is increasing on R ?


Write the interval in which f(x) = sin x + cos x, x ∈ [0, π/2] is increasing ?


Let \[f\left( x \right) = \tan^{- 1} \left( g\left( x \right) \right),\],where g (x) is monotonically increasing for 0 < x < \[\frac{\pi}{2} .\] Then, f(x) is


f(x) = 2x − tan−1 x − log \[\left\{ x + \sqrt{x^2 + 1} \right\}\] is monotonically increasing when

 


In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is


Function f(x) = loga x is increasing on R, if


Let ϕ(x) = f(x) + f(2a − x) and f"(x) > 0 for all x ∈ [0, a]. Then, ϕ (x)


If the function f(x) = x3 − 9kx2 + 27x + 30 is increasing on R, then


The consumption expenditure Ec of a person with the income x. is given by Ec = 0.0006x2 + 0.003x. Find MPC, MPS, APC and APS when the income x = 200.


Using truth table show that ∼ (p → ∼ q) ≡ p ∧ q 


Find the intervals in which function f given by f(x)  = 4x3 - 6x2 - 72x + 30 is (a) strictly increasing, (b) strictly decresing .


The total cost of manufacturing x articles is C = 47x + 300x2 − x4.  Find x, for which average cost is increasing.


Find the values of x for which the following functions are strictly increasing:

f(x) = 3 + 3x – 3x2 + x3


Find the values of x for which the following functions are strictly decreasing : f(x) = `x + (25)/x`


Choose the correct option from the given alternatives :

Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly decreasing in ______.


Solve the following : Find the intervals on which the function y = xx, (x > 0) is increasing and decreasing.


Find the value of x, such that f(x) is decreasing function.

f(x) = 2x3 – 15x2 – 84x – 7 


Prove that function f(x) = `x - 1/x`, x ∈ R and x ≠ 0 is increasing function


Test whether the following function f(x) = 2 – 3x + 3x2 – x3, x ∈ R is increasing or decreasing


Find the values of x for which the function f(x) = 2x3 – 6x2 + 6x + 24 is strictly increasing


The price P for the demand D is given as P = 183 + 120D − 3D2, then the value of D for which price is increasing, is ______.


The area of the square increases at the rate of 0.5 cm2/sec. The rate at which its perimeter is increasing when the side of the square is 10 cm long is ______.


In which interval is the given function, f(x) = 2x3 - 21x2 + 72x + 19 monotonically decreasing?


For every value of x, the function f(x) = `1/7^x` is ______ 


The values of k for which the function f(x) = kx3 – 6x2 + 12x + 11 may be increasing on R are ______.


Prove that the function f(x) = tanx – 4x is strictly decreasing on `((-pi)/3, pi/3)`


Show that f(x) = tan–1(sinx + cosx) is an increasing function in `(0, pi/4)`


The function f (x) = x2, for all real x, is ____________.


The length of the longest interval, in which the function `3  "sin x" - 4  "sin"^3"x"` is increasing, is ____________.


Let x0 be a point in the domain of definition of a real valued function `f` and there exists an open interval I = (x0 –  h, ro + h) containing x0. Then which of the following statement is/ are true for the above statement.


The function f(x) = tan–1(sin x + cos x) is an increasing function in ______.


If f(x) = `x/(x^2 + 1)` is increasing function then the value of x lies in ______.


Find the interval/s in which the function f : R `rightarrow` R defined by f(x) = xex, is increasing.


The function f(x) = sin4x + cos4x is an increasing function if ______.


The intevral in which the function f(x) = 5 + 36x – 3x2 increases will be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×