Advertisements
Advertisements
Question
Find the intervals in which the following functions are strictly increasing or decreasing:
6 − 9x − x2
Solution
f(x) = 6 - 9x - x2
f'(x) = - 9x - 2x = -(2x + 9)
f'(x) = 0 ⇒ (2x + 9) = 0 ⇒ x = - `9/2`
The point x = `- 9/2` divides the number line into two parts, intervals `(- oo, - 9/2)` and `(- 9/2, oo)`.
In the interval `(- oo, - 9/2)`, f'(x) = (-)(-) = + Positive
Hence, the function f is continuously increasing.
In the interval `(- 9/2, oo)`, f'(x) = (-)(+) = - Negative
Hence, the function f is continuously decreasing.
APPEARS IN
RELATED QUESTIONS
Show that the function given by f(x) = sin x is
- strictly increasing in `(0, pi/2)`
- strictly decreasing in `(pi/2, pi)`
- neither increasing nor decreasing in (0, π)
Find the intervals in which the function f given by `f(x) = x^3 + 1/x^3 x != 0`, is (i) increasing (ii) decreasing.
Without using the derivative show that the function f (x) = 7x − 3 is strictly increasing function on R ?
Find the interval in which the following function are increasing or decreasing f(x) = 5x3 − 15x2 − 120x + 3 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 + 9x2 + 12x + 20 ?
Find the interval in which the following function are increasing or decreasing f(x) = 6 + 12x + 3x2 − 2x3 ?
Show that f(x) = tan x is an increasing function on (−π/2, π/2) ?
Show that f(x) = x9 + 4x7 + 11 is an increasing function for all x ∈ R ?
Prove that the function f(x) = x3 − 6x2 + 12x − 18 is increasing on R ?
Prove that the following function is increasing on R f \[(x) =\]3 \[x^5\] + 40 \[x^3\] + 240\[x\] ?
Prove that the function f(x) = cos x is:
(i) strictly decreasing in (0, π)
(ii) strictly increasing in (π, 2π)
(iii) neither increasing nor decreasing in (0, 2π).
Find the interval in which f(x) is increasing or decreasing f(x) = sinx + |sin x|, 0 < x \[\leq 2\pi\] ?
Find the set of values of 'b' for which f(x) = b (x + cos x) + 4 is decreasing on R ?
Find the set of values of 'a' for which f(x) = x + cos x + ax + b is increasing on R ?
In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is
The function f(x) = x9 + 3x7 + 64 is increasing on
Find the intervals in which the function `f("x") = (4sin"x")/(2+cos"x") -"x";0≤"x"≤2pi` is strictly increasing or strictly decreasing.
Find the values of x for which f(x) = `x/(x^2 + 1)` is (a) strictly increasing (b) decreasing.
Show that the function f(x) = x3 + 10x + 7 for x ∈ R is strictly increasing
The function f(x) = `x - 1/x`, x ∈ R, x ≠ 0 is increasing
Find the values of x such that f(x) = 2x3 – 15x2 – 144x – 7 is decreasing function
f(x) = `{{:(0"," x = 0 ), (x - 3"," x > 0):}` The function f(x) is ______
The sides of a square are increasing at the rate of 0.2 cm/sec. When the side is 25cm long, its area is increasing at the rate of ______
Determine for which values of x, the function y = `x^4 – (4x^3)/3` is increasing and for which values, it is decreasing.
Which of the following functions is decreasing on `(0, pi/2)`?
The function f(x) = `(2x^2 - 1)/x^4`, x > 0, decreases in the interval ______.
Let f (x) = tan x – 4x, then in the interval `[- pi/3, pi/3], "f"("x")` is ____________.
`"f"("x") = (("e"^(2"x") - 1)/("e"^(2"x") + 1))` is ____________.
Which of the following graph represent the strictly increasing function.
Function given by f(x) = sin x is strictly increasing in.
Find the value of x for which the function f(x)= 2x3 – 9x2 + 12x + 2 is decreasing.
Given f(x) = 2x3 – 9x2 + 12x + 2
∴ f'(x) = `squarex^2 - square + square`
∴ f'(x) = `6(x - 1)(square)`
Now f'(x) < 0
∴ 6(x – 1)(x – 2) < 0
Since ab < 0 ⇔a < 0 and b < 0 or a > 0 and b < 0
Case 1: (x – 1) < 0 and (x – 2) < 0
∴ x < `square` and x > `square`
Which is contradiction
Case 2: x – 1 and x – 2 < 0
∴ x > `square` and x < `square`
1 < `square` < 2
f(x) is decreasing if and only if x ∈ `square`
If f(x) = x3 + 4x2 + λx + 1(λ ∈ R) is a monotonically decreasing function of x in the largest possible interval `(–2, (–2)/3)` then ______.
Function f(x) = `log(1 + x) - (2x)/(2 + x)` is monotonically increasing when ______.
The function f(x) = tan–1(sin x + cos x) is an increasing function in ______.
The interval in which the function f(x) = `(4x^2 + 1)/x` is decreasing is ______.
A function f is said to be increasing at a point c if ______.
The interval in which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.
Find the interval/s in which the function f : R `rightarrow` R defined by f(x) = xex, is increasing.