English

Show that the function given by f(x) = sin x is a. strictly increasing in (0,π2) b. strictly decreasing in (π2,π) c. neither increasing nor decreasing in (0, π) - Mathematics

Advertisements
Advertisements

Question

Show that the function given by f(x) = sin x is

  1. strictly increasing in `(0, pi/2)`
  2. strictly decreasing in `(pi/2, pi)`
  3. neither increasing nor decreasing in (0, π)
Sum

Solution

The given function is f(x) = sin x.

f'(x) = cos x

a. Since for each `x in (0, pi/2)`, cos x > 0, we have f'(x) > 0

Hence, f is strictly increasing in `(0. pi/2)`

b. Since for each `x in (pi/2 , pi), cos x < 0` we have f'(x) < 0

Hence, f is strictly decreasing in `(pi/2, pi)`

c.  From the results obtained in (a) and (b), it is clear that f is neither increasing nor decreasing in (0, π).

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Application of Derivatives - Exercise 6.2 [Page 205]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 6 Application of Derivatives
Exercise 6.2 | Q 3 | Page 205

RELATED QUESTIONS

Test whether the function is increasing or decreasing. 

f(x) = `"x" -1/"x"`, x ∈ R, x ≠ 0, 


Find the intervals in which the following functions are strictly increasing or decreasing:

−2x3 − 9x2 − 12x + 1


Prove that  y = `(4sin theta)/(2 + cos theta) - theta` is an increasing function of θ in `[0, pi/2]`


Prove that the logarithmic function is strictly increasing on (0, ∞).


Prove that the function f(x) = loge x is increasing on (0, ∞) ?


Find the interval in which the following function are increasing or decreasing  f(x) = x4 − 4x3 + 4x2 + 15 ?


Find the interval in which the following function are increasing or decreasing  f(x) =  \[5 x^\frac{3}{2} - 3 x^\frac{5}{2}\]  x > 0 ?


Show that f(x) = e1/x, x ≠ 0 is a decreasing function for all x ≠ 0 ?


Show that f(x) = tan x is an increasing function on (−π/2, π/2) ?


Show that the function f(x) = cot \[-\] l(sinx + cosx) is decreasing on \[\left( 0, \frac{\pi}{4} \right)\] and increasing on \[\left( 0, \frac{\pi}{4} \right)\] ?


Show that f(x) = x9 + 4x7 + 11 is an increasing function for all x ∈ R ? 


Let f defined on [0, 1] be twice differentiable such that | f (x) | ≤ 1 for all x ∈ [0, 1]. If f(0) = f(1), then show that | f'(x) | < 1 for all x ∈ [ 0, 1] ?


Find the interval in which f(x) is increasing or decreasing f(x) = sinx + |sin x|, 0 < x \[\leq 2\pi\] ?


Find the values of 'a' for which the function f(x) = sin x − ax + 4 is increasing function on R ?


If g (x) is a decreasing function on R and f(x) = tan−1 [g (x)]. State whether f(x) is increasing or decreasing on R ?


State whether f(x) = tan x − x is increasing or decreasing its domain ?


Let f(x) = x3 − 6x2 + 15x + 3. Then,


If the function f(x) = kx3 − 9x2 + 9x + 3 is monotonically increasing in every interval, then


Function f(x) = | x | − | x − 1 | is monotonically increasing when

 

 

 

 

 

 

 

 

 

 

 


The function \[f\left( x \right) = \frac{\lambda \sin x + 2 \cos x}{\sin x + \cos x}\] is increasing, if

 


Find the intervals in which the function \[f(x) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] is

(a) strictly increasing
(b) strictly decreasing


Find the intervals in which function f given by f(x)  = 4x3 - 6x2 - 72x + 30 is (a) strictly increasing, (b) strictly decresing .


The edge of a cube is decreasing at the rate of`( 0.6"cm")/sec`. Find the rate at which its volume is decreasing, when the edge of the cube is 2 cm.


Find the values of x for which the function f(x) = x3 – 12x2 – 144x + 13 (a) increasing (b) decreasing


Show that f(x) = x – cos x is increasing for all x.


Solve the following:

Find the intervals on which the function f(x) = `x/logx` is increasing and decreasing.


Find the value of x, such that f(x) is increasing function.

f(x) = 2x3 - 15x2 - 144x - 7 


Find the value of x such that f(x) is decreasing function.

f(x) = x4 − 2x3 + 1


Test whether the function f(x) = x3 + 6x2 + 12x − 5 is increasing or decreasing for all x ∈ R


Choose the correct alternative:

The function f(x) = x3 – 3x2 + 3x – 100, x ∈ R is


The total cost function for production of articles is given as C = 100 + 600x – 3x2, then the values of x for which the total cost is decreasing is  ______


The function f(x) = `x - 1/x`, x ∈ R, x ≠ 0 is increasing


A ladder 20 ft Jong leans against a vertical wall. The top-end slides downwards at the rate of 2 ft per second. The rate at which the lower end moves on a horizontal floor when it is 12 ft from the wall is ______ 


In which interval is the given function, f(x) = 2x3 - 21x2 + 72x + 19 monotonically decreasing?


y = x(x – 3)2 decreases for the values of x given by : ______.


The function f(x) = `(2x^2 - 1)/x^4`, x > 0, decreases in the interval ______.


Let f be a real valued function defined on (0, 1) ∪ (2, 4) such that f '(x) = 0 for every x, then ____________.


The length of the longest interval, in which the function `3  "sin x" - 4  "sin"^3"x"` is increasing, is ____________.


If f(x) = `x - 1/x`, x∈R, x ≠ 0 then f(x) is increasing.


Let f(x) = tan–1`phi`(x), where `phi`(x) is monotonically increasing for `0 < x < π/2`. Then f(x) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×