English

Show that the function given by f(x) = 3x + 17 is strictly increasing on R. - Mathematics

Advertisements
Advertisements

Question

Show that the function given by f(x) = 3x + 17 is strictly increasing on R.

Sum

Solution

We have f(x) = 3x + 17

f(x) being a polynomial function, is continuous and derivable on R.

f'(x) `3 > 0, x in R`

⇒ f is strictly increasing on R.

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Application of Derivatives - Exercise 6.2 [Page 205]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 6 Application of Derivatives
Exercise 6.2 | Q 2 | Page 205

RELATED QUESTIONS

Price P for demand D is given as P = 183 +120D - 3D2 Find D for which the price is increasing


Find the intervals in which f(x) = sin 3x – cos 3x, 0 < x < π, is strictly increasing or strictly decreasing.


The side of an equilateral triangle is increasing at the rate of 2 cm/s. At what rate is its area increasing when the side of the triangle is 20 cm ?


Test whether the function is increasing or decreasing. 

f(x) = `"x" -1/"x"`, x ∈ R, x ≠ 0, 


The function f (x) = x3 – 3x2 + 3x – 100, x∈ R is _______.

(A) increasing

(B) decreasing

(C) increasing and decreasing

(D) neither increasing nor decreasing


Find the intervals in which the following functions are strictly increasing or decreasing:

−2x3 − 9x2 − 12x + 1


Find the intervals in which the following functions are strictly increasing or decreasing:

6 − 9x − x2


Show that y = `log(1+x) - (2x)/(2+x), x> -  1`, is an increasing function of x throughout its domain.


Find the intervals in which the function f given by `f(x) = (4sin x - 2x - x cos x)/(2 + cos x)` is (i) increasing (ii) decreasing.


Find the interval in which the following function are increasing or decreasing f(x) = x3 − 12x2 + 36x + 17 ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = 3 x^4 - 4 x^3 - 12 x^2 + 5\] ?


Show that f(x) = log sin x is increasing on (0, π/2) and decreasing on (π/2, π) ?


Prove that the function f given by f(x) = x − [x] is increasing in (0, 1) ?


Show that f(x) = x2 − x sin x is an increasing function on (0, π/2) ?


Find the values of b for which the function f(x) = sin x − bx + c is a decreasing function on R ?


Write the set of values of k for which f(x) = kx − sin x is increasing on R ?


Write the interval in which f(x) = sin x + cos x, x ∈ [0, π/2] is increasing ?


Let ϕ(x) = f(x) + f(2a − x) and f"(x) > 0 for all x ∈ [0, a]. Then, ϕ (x)


The total cost of manufacturing x articles is C = 47x + 300x2 − x4.  Find x, for which average cost is increasing.


Test whether the following functions are increasing or decreasing : f(x) = x3 – 6x2 + 12x – 16, x ∈ R.


Test whether the following functions are increasing or decreasing : f(x) = 2 – 3x + 3x2 – x3, x ∈ R.


Find the values of x for which the following functions are strictly increasing : f(x) = 2x3 – 3x2 – 12x + 6


The slope of tangent at any point (a, b) is also called as ______.


Find the values of x such that f(x) = 2x3 – 15x2 + 36x + 1 is increasing function


A man of height 1.9 m walks directly away from a lamp of height 4.75m on a level road at 6m/s. The rate at which the length of his shadow is increasing is


The function f(x) = sin x + 2x is ______ 


For which interval the given function f(x) = 2x3 – 9x2 + 12x + 7 is increasing?


The values of k for which the function f(x) = kx3 – 6x2 + 12x + 11 may be increasing on R are ______.


The function f(x) = x2 – 2x is increasing in the interval ____________.


The function f (x) = x2, for all real x, is ____________.


The function f(x) = tan-1 x is ____________.


Let f (x) = tan x – 4x, then in the interval `[- pi/3, pi/3], "f"("x")` is ____________.


The interval in which `y = x^2e^(-x)` is increasing with respect to `x` is


Let f: [0, 2]→R be a twice differentiable function such that f"(x) > 0, for all x ∈( 0, 2). If `phi` (x) = f(x) + f(2 – x), then `phi` is ______.


Function f(x) = x100 + sinx – 1 is increasing for all x ∈ ______.


Let f(x) = `x/sqrt(a^2 + x^2) - (d - x)/sqrt(b^2 + (d - x)^2), x ∈ R` where a, b and d are non-zero real constants. Then ______.


If f(x) = `x/(x^2 + 1)` is increasing function then the value of x lies in ______.


Read the following passage:

The use of electric vehicles will curb air pollution in the long run.

The use of electric vehicles is increasing every year and the estimated electric vehicles in use at any time t is given by the function V:

V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2`

where t represents the time and t = 1, 2, 3, ...... corresponds to years 2001, 2002, 2003, ...... respectively.

Based on the above information, answer the following questions:

  1. Can the above function be used to estimate number of vehicles in the year 2000? Justify. (2)
  2. Prove that the function V(t) is an increasing function. (2)

The interval in which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.


Find the values of x for which the function f(x) = `x/(x^2 + 1)` is strictly decreasing.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×