English

Test whether the following functions are increasing or decreasing : f(x) = 2 – 3x + 3x2 – x3, x ∈ R. - Mathematics and Statistics

Advertisements
Advertisements

Question

Test whether the following functions are increasing or decreasing : f(x) = 2 – 3x + 3x2 – x3, x ∈ R.

Sum

Solution

f(x) = 2 – 3x + 3x2 – x

∴ f'(x) = `d/dx(2 - 3x + 3x^2 - x^3)`

= 0 – 3 x 1 + 3 x 2x – 3x2
= – 3 + 6x – 3x2
= –3(x2 – 2x + 1)
= – 3(x – 1)2 ≤ 0 for all x ∈ R
∴ f'(x) ≤ 0 for all x ∈ R
∴ f is decreasing for all x ∈ R.

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Applications of Derivatives - Exercise 2.4 [Page 89]

APPEARS IN

RELATED QUESTIONS

Price P for demand D is given as P = 183 +120D - 3D2 Find D for which the price is increasing


Find the value of c in Rolle's theorem for the function `f(x) = x^3 - 3x " in " (-sqrt3, 0)`


Test whether the function is increasing or decreasing. 

f(x) = `"x" -1/"x"`, x ∈ R, x ≠ 0, 


Find the intervals in which the following functions are strictly increasing or decreasing:

6 − 9x − x2


Show that y = `log(1+x) - (2x)/(2+x), x> -  1`, is an increasing function of x throughout its domain.


Prove that the function f given by f(x) = x2 − x + 1 is neither strictly increasing nor strictly decreasing on (−1, 1).


Let I be any interval disjoint from (−1, 1). Prove that the function f given by `f(x) = x + 1/x` is strictly increasing on I.


Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.


Prove that the function f(x) = loge x is increasing on (0, ∞) ?


Prove that f(x) = ax + b, where a, b are constants and a > 0 is an increasing function on R ?


Without using the derivative, show that the function f (x) = | x | is.
(a) strictly increasing in (0, ∞)
(b) strictly decreasing in (−∞, 0) .


Find the interval in which the following function are increasing or decreasing  f(x) = x2 + 2x − 5  ?


Find the interval in which the following function are increasing or decreasing f(x) = 8 + 36x + 3x2 − 2x?


Find the interval in which the following function are increasing or decreasing  f(x) = 5x3 − 15x2 − 120x + 3 ?


Find the interval in which the following function are increasing or decreasing f(x) = 6 + 12x + 3x2 − 2x3 ?


Find the interval in which the following function are increasing or decreasing f(x) = −2x3 − 9x2 − 12x + 1  ?


Find the interval in which the following function are increasing or decreasing f(x) = (x − 1) (x − 2)?


Find the interval in which the following function are increasing or decreasing f(x) = x3 − 12x2 + 36x + 17 ?


Show that f(x) = sin x is increasing on (0, π/2) and decreasing on (π/2, π) and neither increasing nor decreasing in (0, π) ?


Show that f(x) = log sin x is increasing on (0, π/2) and decreasing on (π/2, π) ?


Show that f(x) = cos2 x is a decreasing function on (0, π/2) ?


Prove that the following function is increasing on R f \[f\left( x \right) = 4 x^3 - 18 x^2 + 27x - 27\] ?


Prove that the function f given by f(x) = log cos x is strictly increasing on (−π/2, 0) and strictly decreasing on (0, π/2) ?


Find the interval in which f(x) is increasing or decreasing f(x) = sinx(1 + cosx), 0 < x < \[\frac{\pi}{2}\] ?


What are the values of 'a' for which f(x) = ax is increasing on R ?


Find the set of values of 'b' for which f(x) = b (x + cos x) + 4 is decreasing on R ?


The interval of increase of the function f(x) = x − ex + tan (2π/7) is


The function f(x) = cot−1 x + x increases in the interval


The function f(x) = xx decreases on the interval


The function f(x) = 2 log (x − 2) − x2 + 4x + 1 increases on the interval


Function f(x) = cos x − 2 λ x is monotonic decreasing when


Function f(x) = x3 − 27x + 5 is monotonically increasing when


If the function f(x) = kx3 − 9x2 + 9x + 3 is monotonically increasing in every interval, then


f(x) = 2x − tan−1 x − log \[\left\{ x + \sqrt{x^2 + 1} \right\}\] is monotonically increasing when

 


The function f(x) = x9 + 3x7 + 64 is increasing on


If x = cos2 θ and y = cot θ then find `dy/dx  at  θ=pi/4` 


The total cost of manufacturing x articles is C = 47x + 300x2 − x4.  Find x, for which average cost is increasing.


Prove that the function f : N → N, defined by f(x) = x2 + x + 1 is one-one but not onto. Find the inverse of f: N → S, where S is range of f.


Find the intervals in which the function `f("x") = (4sin"x")/(2+cos"x") -"x";0≤"x"≤2pi` is strictly increasing or strictly decreasing. 


Find the values of x for which the following functions are strictly increasing:

f(x) = 3 + 3x – 3x2 + x3


Find the values of x for which the following func- tions are strictly increasing : f(x) = x3 – 6x2 – 36x + 7


Find the values of x for which f(x) = `x/(x^2 + 1)` is (a) strictly increasing (b) decreasing.


show that f(x) = `3x + (1)/(3x)` is increasing in `(1/3, 1)` and decreasing in `(1/9, 1/3)`.


Show that f(x) = x – cos x is increasing for all x.


Show that y = `log (1 + x) – (2x)/(2 + x), x > - 1` is an increasing function on its domain.


Prove that y = `(4sinθ)/(2 + cosθ) - θ` is an increasing function if `θ ∈[0, pi/2]`


Test whether the following function is increasing or decreasing.

f(x) = `7/"x" - 3`, x ∈ R, x ≠ 0


Find the value of x, such that f(x) is increasing function.

f(x) = 2x3 - 15x2 - 144x - 7 


Find the value of x such that f(x) is decreasing function.

f(x) = x4 − 2x3 + 1


For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the values of x for which Revenue is increasing.


Test whether the function f(x) = x3 + 6x2 + 12x − 5 is increasing or decreasing for all x ∈ R


Find the values of x, for which the function f(x) = x3 + 12x2 + 36𝑥 + 6 is monotonically decreasing


If the function f(x) = `7/x - 3`, x ∈ R, x ≠ 0 is a decreasing function, then x ∈ ______


The function f(x) = `x - 1/x`, x ∈ R, x ≠ 0 is increasing


Show that the function f(x) = `(x - 2)/(x + 1)`, x ≠ – 1 is increasing


By completing the following activity, find the values of x such that f(x) = 2x3 – 15x2 – 84x – 7 is decreasing function.

Solution: f(x) = 2x3 – 15x2 – 84x – 7

∴ f'(x) = `square`

∴ f'(x) = 6`(square) (square)`

Since f(x) is decreasing function.

∴ f'(x) < 0

Case 1: `(square)` > 0 and (x + 2) < 0

∴ x ∈ `square`

Case 2: `(square)` < 0 and (x + 2) > 0

∴ x ∈ `square`

∴ f(x) is decreasing function if and only if x ∈ `square`


The function f(x) = sin x + 2x is ______ 


Let f(x) = x3 + 9x2 + 33x + 13, then f(x) is ______.


The values of k for which the function f(x) = kx3 – 6x2 + 12x + 11 may be increasing on R are ______.


Determine for which values of x, the function y = `x^4 – (4x^3)/3` is increasing and for which values, it is decreasing.


The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.


The function f(x) = x2 – 2x is increasing in the interval ____________.


The function f (x) = x2, for all real x, is ____________.


The interval in which `y = x^2e^(-x)` is increasing with respect to `x` is


Find the value of x for which the function f(x)= 2x3 – 9x2 + 12x + 2 is decreasing.

Given f(x) = 2x3 – 9x2 + 12x + 2

∴ f'(x) = `squarex^2 - square + square`

∴ f'(x) = `6(x - 1)(square)`

Now f'(x) < 0

∴ 6(x – 1)(x – 2) < 0

Since ab < 0 ⇔a < 0 and b < 0 or a > 0 and b < 0

Case 1: (x – 1) < 0 and (x – 2) < 0

∴ x < `square` and x > `square`

Which is contradiction

Case 2: x – 1 and x – 2 < 0

∴ x > `square` and x < `square`

1 < `square` < 2

f(x) is decreasing if and only if x ∈ `square`


The function f(x) = `(4x^3 - 3x^2)/6 - 2sinx + (2x - 1)cosx` ______.


The function f(x) = `|x - 1|/x^2` is monotonically decreasing on ______.


If f(x) = x5 – 20x3 + 240x, then f(x) satisfies ______.


The function f(x) = x3 + 3x is increasing in interval ______.


The intevral in which the function f(x) = 5 + 36x – 3x2 increases will be ______.


Find the values of x for which the function f(x) = `x/(x^2 + 1)` is strictly decreasing.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×