Advertisements
Advertisements
Question
Find the interval in which f(x) is increasing or decreasing f(x) = sinx(1 + cosx), 0 < x < \[\frac{\pi}{2}\] ?
Solution
\[\left( iii \right) f\left( x \right) = sin x\left( 1 + cos x \right), 0 < x < \frac{\pi}{2}\]
`f( x) = sin x + sin x\cos x`
` ⇒f(x) = cos x + sin x ( - sin x \right) + cos x\cos x`
`⇒ f(x) = cos x - \sin^2 x + cos^2 x`
`⇒ f(x) = co sx + \cos^2 x - 1 + \cos^2 x`
`⇒ f(x) = 2 \cos^2 x + \cosx - 1`
`⇒ f(x) = 2 \cos^2 x + 2\cosx - \cosx - 1`
`⇒ f(x) = 2\cos x( \cos x + 1 \right) - 1\left( \cos x + 1 )`
`⇒ f(x) = ( 2\cos x - 1 cos x + 1 \right)`
For f(x) to be increasing, we must have
\[f'\left( x \right) > 0\]
`⇒ ( 2 cos x - 1 )( cos x + 1 ) > 0`
This is only possible when
`(2\cos x - 1 ) > 0 and ( cos x + 1 ) > 0`
`⇒ ( 2\cos x - 1 ) > 0 and ( cos x + 1 ) > 0`
`⇒ cos x > 1/2 and cos x > - 1`
`⇒ x ∈ ( 0, π / 3 )and x ∈ ( 0, π / 2 )`
\[So, x \in \left( 0, \frac{\pi}{3} \right)\]
∴ f(x) is increasing on (o, π / 3 )
For f(x) to be decreasing, we must have
\[f'\left( x \right) < 0\]
`⇒ ( 2 cos x - 1 )( cos x + 1 ) < 0`
This is only possible when
`( 2\cosx - 1 ) < 0 and ( cosx + 1 ) > 0`
`⇒ ( 2\cosx - 1 ) < 0 and ( cosx + 1 ) > 0`
`⇒cosx < 1/2 and cosx > - 1`
`⇒ x ∈ (π/3 ,π/2 ) and x ∈ (0 ,π/2 )`
\[So, x \in \left( \frac{\pi}{3}, \frac{\pi}{2} \right)\
` ∴ f (x) \text{ is decreasing on } (π/3 ,π/2 ) .`
APPEARS IN
RELATED QUESTIONS
Show that the function given by f(x) = 3x + 17 is strictly increasing on R.
Find the intervals in which the following functions are strictly increasing or decreasing:
10 − 6x − 2x2
On which of the following intervals is the function f given byf(x) = x100 + sin x –1 strictly decreasing?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 12x2 + 36x + 17 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{10} x^4 - \frac{4}{5} x^3 - 3 x^2 + \frac{36}{5}x + 11\] ?
Show that f(x) = e2x is increasing on R.
Show that f(x) = log sin x is increasing on (0, π/2) and decreasing on (π/2, π) ?
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π) ?
Show that f(x) = (x − 1) ex + 1 is an increasing function for all x > 0 ?
State when a function f(x) is said to be increasing on an interval [a, b]. Test whether the function f(x) = x2 − 6x + 3 is increasing on the interval [4, 6] ?
Find the values of b for which the function f(x) = sin x − bx + c is a decreasing function on R ?
What are the values of 'a' for which f(x) = ax is increasing on R ?
Find the set of values of 'b' for which f(x) = b (x + cos x) + 4 is decreasing on R ?
The function f(x) = cot−1 x + x increases in the interval
The function f(x) = x2 e−x is monotonic increasing when
Function f(x) = x3 − 27x + 5 is monotonically increasing when
f(x) = 2x − tan−1 x − log \[\left\{ x + \sqrt{x^2 + 1} \right\}\] is monotonically increasing when
Let ϕ(x) = f(x) + f(2a − x) and f"(x) > 0 for all x ∈ [0, a]. Then, ϕ (x)
The function f(x) = −x/2 + sin x defined on [−π/3, π/3] is
If the function f(x) = x3 − 9kx2 + 27x + 30 is increasing on R, then
The total cost of manufacturing x articles is C = 47x + 300x2 − x4. Find x, for which average cost is increasing.
Test whether the following functions are increasing or decreasing : f(x) = x3 – 6x2 + 12x – 16, x ∈ R.
Solve the following : Find the intervals on which the function y = xx, (x > 0) is increasing and decreasing.
State whether the following statement is True or False:
The function f(x) = `"x"*"e"^("x" (1 - "x"))` is increasing on `((-1)/2, 1)`.
Show that function f(x) =`3/"x" + 10`, x ≠ 0 is decreasing.
Prove that function f(x) = `x - 1/x`, x ∈ R and x ≠ 0 is increasing function
Test whether the function f(x) = x3 + 6x2 + 12x − 5 is increasing or decreasing for all x ∈ R
The price P for the demand D is given as P = 183 + 120D − 3D2, then the value of D for which price is increasing, is ______.
State whether the following statement is True or False:
The function f(x) = `3/x` + 10, x ≠ 0 is decreasing
If f(x) = [x], where [x] is the greatest integer not greater than x, then f'(1') = ______.
For which interval the given function f(x) = 2x3 – 9x2 + 12x + 7 is increasing?
If f(x) = `x^(3/2) (3x - 10)`, x ≥ 0, then f(x) is increasing in ______.
Show that f(x) = 2x + cot–1x + `log(sqrt(1 + x^2) - x)` is increasing in R
The function f(x) = tanx – x ______.
The interval in which the function f is given by f(x) = x2 e-x is strictly increasing, is: ____________.
The function `"f"("x") = "log" (1 + "x") - (2"x")/(2 + "x")` is increasing on ____________.
The length of the longest interval, in which the function `3 "sin x" - 4 "sin"^3"x"` is increasing, is ____________.
Let h(x) = f(x) - [f(x)]2 + [f(x)]3 for every real number x. Then ____________.
The function f(x) = `(4x^3 - 3x^2)/6 - 2sinx + (2x - 1)cosx` ______.
Read the following passage:
The use of electric vehicles will curb air pollution in the long run. V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2` where t represents the time and t = 1, 2, 3, ...... corresponds to years 2001, 2002, 2003, ...... respectively. |
Based on the above information, answer the following questions:
- Can the above function be used to estimate number of vehicles in the year 2000? Justify. (2)
- Prove that the function V(t) is an increasing function. (2)