Advertisements
Advertisements
Question
Show that function f(x) =`3/"x" + 10`, x ≠ 0 is decreasing.
Solution
f(x) = `3/"x" + 10`
For function to be decreasing, f '(x) < 0
Then f '(x) = `(- 3)/"x"^2 < 0` ....[∵ x ≠ 0, - x2 < 0]
Negative sign indicates that it always decreases as x2 never becomes negative.
Thus, f(x) is a decreasing function for x ≠ 0.
APPEARS IN
RELATED QUESTIONS
Find the value of c in Rolle's theorem for the function `f(x) = x^3 - 3x " in " (-sqrt3, 0)`
Find the intervals in which the following functions are strictly increasing or decreasing:
−2x3 − 9x2 − 12x + 1
Prove that the function f given by f(x) = x2 − x + 1 is neither strictly increasing nor strictly decreasing on (−1, 1).
Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.
Prove that the function f(x) = loge x is increasing on (0, ∞) ?
Prove that the function f(x) = loga x is increasing on (0, ∞) if a > 1 and decreasing on (0, ∞), if 0 < a < 1 ?
Show that f(x) = \[\frac{1}{x}\] is a decreasing function on (0, ∞) ?
Find the interval in which the following function are increasing or decreasing f(x) = 8 + 36x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing f(x) = 6 + 12x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x ?
Show that f(x) = cos2 x is a decreasing function on (0, π/2) ?
Prove that the function f given by f(x) = x − [x] is increasing in (0, 1) ?
The function f(x) = xx decreases on the interval
Let \[f\left( x \right) = \tan^{- 1} \left( g\left( x \right) \right),\],where g (x) is monotonically increasing for 0 < x < \[\frac{\pi}{2} .\] Then, f(x) is
If the function f(x) = kx3 − 9x2 + 9x + 3 is monotonically increasing in every interval, then
Every invertible function is
Show that the function f given by f(x) = tan–1 (sin x + cos x) is decreasing for all \[x \in \left( \frac{\pi}{4}, \frac{\pi}{2} \right) .\]
Find `dy/dx,if e^x+e^y=e^(x-y)`
Using truth table show that ∼ (p → ∼ q) ≡ p ∧ q
Find MPC ( Marginal propensity to Consume ) and APC ( Average Propensity to Consume ) if the expenditure Ec of a person with income I is given as Ec = ( 0.0003 ) I2 + ( 0.075 ) I when I = 1000.
Show that y = `log (1 + x) – (2x)/(2 + x), x > - 1` is an increasing function on its domain.
Show that function f(x) =`("x - 2")/("x + 1")`, x ≠ -1 is increasing.
Show that the function f(x) = x3 + 10x + 7 for x ∈ R is strictly increasing
Find the values of x such that f(x) = 2x3 – 15x2 – 144x – 7 is decreasing function
Show that the function f(x) = `(x - 2)/(x + 1)`, x ≠ – 1 is increasing
Show that f(x) = 2x + cot–1x + `log(sqrt(1 + x^2) - x)` is increasing in R
The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.
Let `"f (x) = x – cos x, x" in "R"`, then f is ____________.
The function which is neither decreasing nor increasing in `(pi/2,(3pi)/2)` is ____________.
The function `"f"("x") = "log" (1 + "x") - (2"x")/(2 + "x")` is increasing on ____________.
Which of the following graph represent the strictly increasing function.
Let x0 be a point in the domain of definition of a real valued function `f` and there exists an open interval I = (x0 – h, ro + h) containing x0. Then which of the following statement is/ are true for the above statement.
Let f: [0, 2]→R be a twice differentiable function such that f"(x) > 0, for all x ∈( 0, 2). If `phi` (x) = f(x) + f(2 – x), then `phi` is ______.
Let f : R `rightarrow` R be a positive increasing function with `lim_(x rightarrow ∞) (f(3x))/(f(x))` = 1 then `lim_(x rightarrow ∞) (f(2x))/(f(x))` = ______.
A function f is said to be increasing at a point c if ______.
Find the interval/s in which the function f : R `rightarrow` R defined by f(x) = xex, is increasing.
The function f(x) = sin4x + cos4x is an increasing function if ______.