Advertisements
Advertisements
Question
Show that the function f given by f(x) = tan–1 (sin x + cos x) is decreasing for all \[x \in \left( \frac{\pi}{4}, \frac{\pi}{2} \right) .\]
Solution
\[f\left( x \right) = \tan^{- 1} \left( \sin x + \cos x \right)\]
\[f'\left( x \right) = \frac{1}{1 + \left( \sin x + \cos x \right)^2}\left( \cos x - \sin x \right)\]
\[ = \frac{1}{1 + 1 + 2 \sin x \cos x}\left( \cos x - \sin x \right)\]
\[ = \frac{\left( \cos x - \sin x \right)}{2 + \sin 2x}\]
Here,
\[\frac{\pi}{4} < x < \frac{\pi}{2}\]
\[ \Rightarrow \frac{\pi}{2} < 2x < \pi\]
\[ \Rightarrow \sin 2x > 0\]
\[ \Rightarrow 2 + \sin 2x > 0 . . . \left( 1 \right)\]
Also,
\[\frac{\pi}{4} < x < \frac{\pi}{2}\]
\[\cos x < \sin x\]
\[ \Rightarrow \cos x - \sin x < 0 . . . \left( 2 \right)\]
\[f'\left( x \right) = \frac{\left( \cos x - \sin x \right)}{2 + \sin 2x} < 0, \forall x \in \left( \frac{\pi}{4}, \frac{\pi}{2} \right) \left[ \text { From eqs . (1) and (2) }\right]\]
Therefore, f(x) is decreasing for all
\[x \in \left( \frac{\pi}{4}, \frac{\pi}{2} \right) .\]
APPEARS IN
RELATED QUESTIONS
Find the intervals in which the function f(x) = 3x4 − 4x3 − 12x2 + 5 is
(a) strictly increasing
(b) strictly decreasing
The amount of pollution content added in air in a city due to x-diesel vehicles is given by P(x) = 0.005x3 + 0.02x2 + 30x. Find the marginal increase in pollution content when 3 diesel vehicles are added and write which value is indicated in the above question.
Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.
Find the intervals in which the function f given by `f(x) = x^3 + 1/x^3 x != 0`, is (i) increasing (ii) decreasing.
Find the intervals in which the function `f(x) = x^4/4 - x^3 - 5x^2 + 24x + 12` is (a) strictly increasing, (b) strictly decreasing
Show that f(x) = \[\frac{1}{1 + x^2}\] decreases in the interval [0, ∞) and increases in the interval (−∞, 0] ?
Without using the derivative, show that the function f (x) = | x | is.
(a) strictly increasing in (0, ∞)
(b) strictly decreasing in (−∞, 0) .
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 − 36x + 2 ?
Determine the values of x for which the function f(x) = x2 − 6x + 9 is increasing or decreasing. Also, find the coordinates of the point on the curve y = x2 − 6x + 9 where the normal is parallel to the line y = x + 5 ?
Let \[f\left( x \right) = \tan^{- 1} \left( g\left( x \right) \right),\],where g (x) is monotonically increasing for 0 < x < \[\frac{\pi}{2} .\] Then, f(x) is
The function f(x) = −x/2 + sin x defined on [−π/3, π/3] is
For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the value of x for which Total cost is decreasing.
Find the values of x for which the following func- tions are strictly increasing : f(x) = x3 – 6x2 – 36x + 7
Choose the correct option from the given alternatives :
Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly decreasing in ______.
Find the value of x, such that f(x) is increasing function.
f(x) = x2 + 2x - 5
Find the values of x for which the function f(x) = 2x3 – 6x2 + 6x + 24 is strictly increasing
State whether the following statement is True or False:
The function f(x) = `3/x` + 10, x ≠ 0 is decreasing
Show that the function f(x) = `(x - 2)/(x + 1)`, x ≠ – 1 is increasing
The area of the square increases at the rate of 0.5 cm2/sec. The rate at which its perimeter is increasing when the side of the square is 10 cm long is ______.
If f(x) = [x], where [x] is the greatest integer not greater than x, then f'(1') = ______.
Given P(x) = x4 + ax3 + bx2 + cx + d such that x = 0 is the only real root of P'(x) = 0. If P(-1) < P(1), then in the interval [-1, 1] ______
The values of a for which the function f(x) = sinx – ax + b increases on R are ______.
In case of decreasing functions, slope of tangent and hence derivative is ____________.
Let x0 be a point in the domain of definition of a real valued function `f` and there exists an open interval I = (x0 – h, ro + h) containing x0. Then which of the following statement is/ are true for the above statement.
If f(x) = x3 + 4x2 + λx + 1(λ ∈ R) is a monotonically decreasing function of x in the largest possible interval `(–2, (–2)/3)` then ______.
Let f(x) be a function such that; f'(x) = log1/3(log3(sinx + a)) (where a ∈ R). If f(x) is decreasing for all real values of x then the exhaustive solution set of a is ______.
Let f(x) = tan–1`phi`(x), where `phi`(x) is monotonically increasing for `0 < x < π/2`. Then f(x) is ______.
Function f(x) = x100 + sinx – 1 is increasing for all x ∈ ______.
The interval in which the function f(x) = `(4x^2 + 1)/x` is decreasing is ______.
The interval in which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.