English

Show That F(X) = Cos2 X Is a Decreasing Function on (0, π/2) ? - Mathematics

Advertisements
Advertisements

Question

Show that f(x) = cos2 x is a decreasing function on (0, π/2) ?

Sum

Solution

\[f\left( x \right) = \cos^2 x\]

\[f'\left( x \right) = 2 \cos x \left( - \sin x \right)\]

\[ \Rightarrow f'\left( x \right) = - \sin \left( 2x \right) . . . \left( 1 \right)\]

\[\text { Now,}\]

\[0 < x < \frac{\pi}{2}\]

\[ \Rightarrow 0 < 2x < \pi \]

\[ \Rightarrow \sin 2x > 0 \left[ \because \text { Sine fuction is positive in first and second quadrant } \right]\]

\[ \Rightarrow - \sin 2x < 0\]

\[ \Rightarrow f'\left( x \right) < 0 \left[ \text { From eq.} (1) \right]\]

\[\text { So,f(x)is decreasing on}\left( 0, \frac{\pi}{2} \right).\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 17: Increasing and Decreasing Functions - Exercise 17.2 [Page 34]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 17 Increasing and Decreasing Functions
Exercise 17.2 | Q 11 | Page 34

RELATED QUESTIONS

Find the intervals in which the function f(x) = 3x4 − 4x3 − 12x2 + 5 is

(a) strictly increasing

(b) strictly decreasing


Find the intervals in which f(x) = sin 3x – cos 3x, 0 < x < π, is strictly increasing or strictly decreasing.


Show that the function `f(x) = x^3 - 3x^2 + 6x - 100` is increasing on R


Find the intervals in which the function f given by f(x) = 2x2 − 3x is

  1. strictly increasing
  2. strictly decreasing

Water is dripping out from a conical funnel of semi-verticle angle `pi/4` at the uniform rate of `2 cm^2/sec`in the surface, through a tiny hole at the vertex of the bottom. When the slant height of the water level is 4 cm, find the rate of decrease of the slant height of the water.


Without using the derivative show that the function f (x) = 7x − 3 is strictly increasing function on R ?


Find the interval in which the following function are increasing or decreasing  f(x) =  \[5 x^\frac{3}{2} - 3 x^\frac{5}{2}\]  x > 0 ?


Find the intervals in which f(x) = sin x − cos x, where 0 < x < 2π is increasing or decreasing ?


Show that the function x2 − x + 1 is neither increasing nor decreasing on (0, 1) ?


State when a function f(x) is said to be increasing on an interval [a, b]. Test whether the function f(x) = x2 − 6x + 3 is increasing on the interval [4, 6] ?


Find the value(s) of a for which f(x) = x3 − ax is an increasing function on R ?


Show that f(x) = x + cos x − a is an increasing function on R for all values of a ?


Write the set of values of 'a' for which f(x) = loga x is increasing in its domain ?


Find the set of values of 'b' for which f(x) = b (x + cos x) + 4 is decreasing on R ?


If g (x) is a decreasing function on R and f(x) = tan−1 [g (x)]. State whether f(x) is increasing or decreasing on R ?


Let \[f\left( x \right) = \tan^{- 1} \left( g\left( x \right) \right),\],where g (x) is monotonically increasing for 0 < x < \[\frac{\pi}{2} .\] Then, f(x) is


The function \[f\left( x \right) = \frac{x}{1 + \left| x \right|}\] is 

 


Show that the function f given by f(x) = tan–1 (sin x + cos x) is decreasing for all \[x \in \left( \frac{\pi}{4}, \frac{\pi}{2} \right) .\]


Test whether the following functions are increasing or decreasing : f(x) = x3 – 6x2 + 12x – 16, x ∈ R.


State whether the following statement is True or False:

The function f(x) = `"x"*"e"^("x" (1 - "x"))` is increasing on `((-1)/2, 1)`.


Test whether the function f(x) = x3 + 6x2 + 12x − 5 is increasing or decreasing for all x ∈ R


Find the values of x for which the function f(x) = 2x3 – 6x2 + 6x + 24 is strictly increasing


The function f(x) = sin x + 2x is ______ 


For which interval the given function f(x) = 2x3 – 9x2 + 12x + 7 is increasing?


The function f(x) = tanx – x ______.


The function f(x) = `(2x^2 - 1)/x^4`, x > 0, decreases in the interval ______.


Let f (x) = tan x – 4x, then in the interval `[- pi/3, pi/3], "f"("x")` is ____________.


The function f(x) = tan-1 (sin x + cos x) is an increasing function in:


The function `"f"("x") = "log" (1 + "x") - (2"x")/(2 + "x")` is increasing on ____________.


The length of the longest interval, in which the function `3  "sin x" - 4  "sin"^3"x"` is increasing, is ____________.


The function f: N → N, where

f(n) = `{{:(1/2(n + 1), "If n is sold"),(1/2n, "if n is even"):}` is


If f(x) = `x - 1/x`, x∈R, x ≠ 0 then f(x) is increasing.


If f(x) = x5 – 20x3 + 240x, then f(x) satisfies ______.


Function f(x) = x100 + sinx – 1 is increasing for all x ∈ ______.


Let f : R `rightarrow` R be a positive increasing function with `lim_(x rightarrow ∞) (f(3x))/(f(x))` = 1 then `lim_(x rightarrow ∞) (f(2x))/(f(x))` = ______.


The function f(x) = tan–1(sin x + cos x) is an increasing function in ______.


The interval in which the function f(x) = `(4x^2 + 1)/x` is decreasing is ______.


Find the values of x for which the function f(x) = `x/(x^2 + 1)` is strictly decreasing.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×