Advertisements
Advertisements
Question
Show that f(x) = 2x + cot–1x + `log(sqrt(1 + x^2) - x)` is increasing in R
Solution
Given that f(x) = 2x + cot–1x + `log(sqrt(1 + x^2) - x)`
Differentiating both sides w.r.t. x, we get
f'(x) = `2 - 1/(1 + x^2) + 1/(sqrt(1 + x^2) - x) xx "d"/"dx" (sqrt(1 + x^2) - x)`
= `2 - 1/(1 + x^2) + ((1/(2sqrt(1 + x^2)) xx (2x - 1)))/(sqrt(1 + x^2) - x)`
= `2 - 1/(1 + x^2) + (x - sqrt(1 + x^2))/(sqrt(1 + x^2) (sqrt(1 + x^2 - x))`
= `2 - 1/(1 + x^2) - ((sqrt(1 + x^2) - x))/(sqrt(1 + x^2) (sqrt(1 + x^2) - x))`
= `2 - 1/(1 + x^2) - 1/sqrt(1 + x^2)`
For increasing function, f '(x) ≥ 0
∴ `2 - 1/(1 + x^2) - 1/sqrt(1 + x^2) ≥ 0`
⇒ `(2(1 + x^2) - 1 + sqrt(1 + x^2))/((1 + x^2)) ≥ 0`
⇒ `2 + 2x^2 - 1 + sqrt(1 + x^2) ≥ 0`
⇒ `2x^2 + 1 + sqrt(1 + x^2) ≥ 0`
⇒ `2x^2 + 1 ≥ - sqrt(1 + x^2)`
Squaring both sides, we get 4x4 + 1 + 4x2 ≥ 1 + x2
⇒ 4x4 + 4x2 – x2 ≥ 0
⇒ 4x4 + 3x2 ≥ 0
⇒ x2(4x2 + 3) ≥ 0
Which is true for any value of x ∈ R.
Hence, the given function is an increasing function over R.
APPEARS IN
RELATED QUESTIONS
The side of an equilateral triangle is increasing at the rate of 2 cm/s. At what rate is its area increasing when the side of the triangle is 20 cm ?
Find the intervals in which the function f given by f(x) = 2x3 − 3x2 − 36x + 7 is
- Strictly increasing
- Strictly decreasing
Show that the function f(x) = 4x3 - 18x2 + 27x - 7 is always increasing on R.
Find the interval in which the following function are increasing or decreasing f(x) = 5 + 36x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x ?
Find the interval in which the following function are increasing or decreasing f(x) = x8 + 6x2 ?
Determine the values of x for which the function f(x) = x2 − 6x + 9 is increasing or decreasing. Also, find the coordinates of the point on the curve y = x2 − 6x + 9 where the normal is parallel to the line y = x + 5 ?
Write the set of values of k for which f(x) = kx − sin x is increasing on R ?
Write the set of values of a for which f(x) = cos x + a2 x + b is strictly increasing on R ?
The function \[f\left( x \right) = \frac{\lambda \sin x + 2 \cos x}{\sin x + \cos x}\] is increasing, if
Function f(x) = ax is increasing on R, if
Function f(x) = loga x is increasing on R, if
Find the intervals in which the function \[f(x) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] is
(a) strictly increasing
(b) strictly decreasing
Find the values of x for which the following functions are strictly decreasing:
f(x) = 2x3 – 3x2 – 12x + 6
Find the value of x, such that f(x) is increasing function.
f(x) = x2 + 2x - 5
Find the value of x, such that f(x) is decreasing function.
f(x) = 2x3 – 15x2 – 84x – 7
Find the values of x such that f(x) = 2x3 – 15x2 + 36x + 1 is increasing function
Let f(x) = x3 + 9x2 + 33x + 13, then f(x) is ______.
Show that for a ≥ 1, f(x) = `sqrt(3)` sinx – cosx – 2ax + b ∈ is decreasing in R
In case of decreasing functions, slope of tangent and hence derivative is ____________.
The function f (x) = 2 – 3 x is ____________.
Let `"f (x) = x – cos x, x" in "R"`, then f is ____________.
The function `"f"("x") = "log" (1 + "x") - (2"x")/(2 + "x")` is increasing on ____________.
If f(x) = x3 + 4x2 + λx + 1(λ ∈ R) is a monotonically decreasing function of x in the largest possible interval `(–2, (–2)/3)` then ______.
The function f(x) = `|x - 1|/x^2` is monotonically decreasing on ______.
Function f(x) = `log(1 + x) - (2x)/(2 + x)` is monotonically increasing when ______.
Let f : R `rightarrow` R be a positive increasing function with `lim_(x rightarrow ∞) (f(3x))/(f(x))` = 1 then `lim_(x rightarrow ∞) (f(2x))/(f(x))` = ______.
Let f(x) = `x/sqrt(a^2 + x^2) - (d - x)/sqrt(b^2 + (d - x)^2), x ∈ R` where a, b and d are non-zero real constants. Then ______.
Find the interval in which the function f(x) = x2e–x is strictly increasing or decreasing.