English

Show that for a ≥ 1, f(x) = 3 sinx – cosx – 2ax + b ∈ is decreasing in R - Mathematics

Advertisements
Advertisements

Question

Show that for a ≥ 1, f(x) = `sqrt(3)` sinx – cosx – 2ax + b ∈ is decreasing in R

Sum

Solution

Given that: f(x) = `sqrt(3)` sinx – cosx – 2ax + b, a ≥ 1

Differentiating both sides w.r.t. x, we get

f'(x) = `sqrt(3) cos x + sin x - 2"a"`

For decreasing function, f'(x) < 0

∴ `sqrt(3) cos x + sin x - 2"a" < 0`

⇒ `2(sqrt(3)/2 cos x + 1/2 sin x) - 2"a" < 0`

⇒ `sqrt(3)/2 cos x + 1/2 sin x - "a" < 0`

⇒ `(cos  pi/6 cos x + sin  pi/6 sin x) - "a" < 0`

⇒ `cos(x - pi/6) - "a " < 0`

Since cos x ∈ [– 1, 1] and a ≥ 1

∴ f'(x) < 0

Hence, the given function is decreasing in R.

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Application Of Derivatives - Exercise [Page 137]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 6 Application Of Derivatives
Exercise | Q 21 | Page 137

RELATED QUESTIONS

Find the intervals in which the function f given by f(x) = 2x2 − 3x is

  1. strictly increasing
  2. strictly decreasing

Prove that  y = `(4sin theta)/(2 + cos theta) - theta` is an increasing function of θ in `[0, pi/2]`


Find the intervals in which the function f given by `f(x) = x^3 + 1/x^3 x != 0`, is (i) increasing (ii) decreasing.


Water is dripping out from a conical funnel of semi-verticle angle `pi/4` at the uniform rate of `2 cm^2/sec`in the surface, through a tiny hole at the vertex of the bottom. When the slant height of the water level is 4 cm, find the rate of decrease of the slant height of the water.


Prove that f(x) = ax + b, where a, b are constants and a > 0 is an increasing function on R ?


Find the interval in which the following function are increasing or decreasing  f(x) = 5x3 − 15x2 − 120x + 3 ?


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 + 9x2 + 12x + 20  ?


Find the interval in which the following function are increasing or decreasing  f(x) = 2x3 − 24x + 107  ?


Find the interval in which the following function are increasing or decreasing f(x) = (x − 1) (x − 2)?


Determine the values of x for which the function f(x) = x2 − 6x + 9 is increasing or decreasing. Also, find the coordinates of the point on the curve y = x2 − 6x + 9 where the normal is parallel to the line y = x + 5 ? 


Show that f(x) = cos2 x is a decreasing function on (0, π/2) ?


Prove that the function f given by f(x) = log cos x is strictly increasing on (−π/2, 0) and strictly decreasing on (0, π/2) ?


Find the values of b for which the function f(x) = sin x − bx + c is a decreasing function on R ?


Function f(x) = | x | − | x − 1 | is monotonically increasing when

 

 

 

 

 

 

 

 

 

 

 


Let ϕ(x) = f(x) + f(2a − x) and f"(x) > 0 for all x ∈ [0, a]. Then, ϕ (x)


Show that the function f given by f(x) = tan–1 (sin x + cos x) is decreasing for all \[x \in \left( \frac{\pi}{4}, \frac{\pi}{2} \right) .\]


Find the intervals in which the function `f("x") = (4sin"x")/(2+cos"x") -"x";0≤"x"≤2pi` is strictly increasing or strictly decreasing. 


Test whether the following functions are increasing or decreasing : f(x) = `(1)/x`, x ∈ R , x ≠ 0.


Find the values of x for which f(x) = 2x3 – 15x2 – 144x – 7 is

(a) Strictly increasing
(b) strictly decreasing


The price P for the demand D is given as P = 183 + 120D − 3D2, then the value of D for which price is increasing, is ______.


The function f(x) = `x - 1/x`, x ∈ R, x ≠ 0 is increasing


Find the values of x such that f(x) = 2x3 – 15x2 + 36x + 1 is increasing function


A ladder 20 ft Jong leans against a vertical wall. The top-end slides downwards at the rate of 2 ft per second. The rate at which the lower end moves on a horizontal floor when it is 12 ft from the wall is ______ 


The sides of a square are increasing at the rate of 0.2 cm/sec. When the side is 25cm long, its area is increasing at the rate of ______


The function f (x) = x2, for all real x, is ____________.


Let x0 be a point in the domain of definition of a real valued function `f` and there exists an open interval I = (x0 –  h, ro + h) containing x0. Then which of the following statement is/ are true for the above statement.


Find the interval in which the function `f` is given by `f(x) = 2x^2 - 3x` is strictly decreasing.


If f(x) = `x - 1/x`, x∈R, x ≠ 0 then f(x) is increasing.


If f(x) = x + cosx – a then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×