English

Prove that F(X) = Ax + B, Where A, B Are Constants and a > 0 is an Increasing Function on R ? - Mathematics

Advertisements
Advertisements

Question

Prove that f(x) = ax + b, where a, b are constants and a > 0 is an increasing function on R ?

Sum

Solution

\[\text { Here }, \]

\[f\left( x \right) = ax + b\]

\[\text { Let } x_1 , x_2 \text { in R such that } x_1 < x_2 . \text { Then },\]

\[ x_1 < x_2 \]

\[ \Rightarrow a x_1 < a x_2 \left[ \because a>0 \right]\]

\[ \Rightarrow a x_1 + b < a x_2 + b\]

\[ \Rightarrow f\left( x_1 \right) < f\left( x_2 \right)\]

\[ \therefore x_1 < x_2 \]

\[ \Rightarrow f\left( x_1 \right) < f\left( x_2 \right), \forall x_1 , x_2 \in R \]

\[\text { So },f\left( x \right) \text { is increasing on R } .\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 17: Increasing and Decreasing Functions - Exercise 17.1 [Page 10]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 17 Increasing and Decreasing Functions
Exercise 17.1 | Q 3 | Page 10

RELATED QUESTIONS

Prove that the logarithmic function is strictly increasing on (0, ∞).


On which of the following intervals is the function f given byf(x) = x100 + sin x –1 strictly decreasing?


Find the interval in which the following function are increasing or decreasing f(x) = 8 + 36x + 3x2 − 2x?


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 9x2 + 12x − 5 ?


Find the interval in which the following function are increasing or decreasing  f(x) = 2x3 − 24x + 7 ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \log\left( 2 + x \right) - \frac{2x}{2 + x}, x \in R\] ?


Show that f(x) = sin x is increasing on (0, π/2) and decreasing on (π/2, π) and neither increasing nor decreasing in (0, π) ?


Show that f(x) = log sin x is increasing on (0, π/2) and decreasing on (π/2, π) ?


Find the interval in which f(x) is increasing or decreasing f(x) = sinx(1 + cosx), 0 < x < \[\frac{\pi}{2}\] ?


If the function f(x) = 2x2 − kx + 5 is increasing on [1, 2], then k lies in the interval


Let \[f\left( x \right) = \tan^{- 1} \left( g\left( x \right) \right),\],where g (x) is monotonically increasing for 0 < x < \[\frac{\pi}{2} .\] Then, f(x) is


In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is


Let ϕ(x) = f(x) + f(2a − x) and f"(x) > 0 for all x ∈ [0, a]. Then, ϕ (x)


The function f(x) = x9 + 3x7 + 64 is increasing on


Show that the function f given by f(x) = tan–1 (sin x + cos x) is decreasing for all \[x \in \left( \frac{\pi}{4}, \frac{\pi}{2} \right) .\]


Find the values of x for which the following functions are strictly decreasing : f(x) = `x + (25)/x`


Find the values of x for which the function f(x) = x3 – 12x2 – 144x + 13 (a) increasing (b) decreasing


Show that y = `log (1 + x) – (2x)/(2 + x), x > - 1` is an increasing function on its domain.


Find the value of x, such that f(x) is increasing function.

f(x) = 2x3 - 15x2 - 144x - 7 


Show that the function f(x) = `(x - 2)/(x + 1)`, x ≠ – 1 is increasing


Given P(x) = x4 + ax3 + bx2 + cx + d such that x = 0 is the only real root of P'(x) = 0. If P(-1) < P(1), then in the interval [-1, 1] ______


The function f(x) = sin x + 2x is ______ 


In which interval is the given function, f(x) = 2x3 - 21x2 + 72x + 19 monotonically decreasing?


If f(x) = `x^(3/2) (3x - 10)`, x ≥ 0, then f(x) is increasing in ______.


Determine for which values of x, the function y = `x^4 – (4x^3)/3` is increasing and for which values, it is decreasing.


The function f(x) = x2 – 2x is increasing in the interval ____________.


Let f (x) = tan x – 4x, then in the interval `[- pi/3, pi/3], "f"("x")` is ____________.


The function f(x) = tan-1 (sin x + cos x) is an increasing function in:


Which of the following graph represent the strictly increasing function.


If f(x) = `x - 1/x`, x∈R, x ≠ 0 then f(x) is increasing.


Let f: [0, 2]→R be a twice differentiable function such that f"(x) > 0, for all x ∈( 0, 2). If `phi` (x) = f(x) + f(2 – x), then `phi` is ______.


If f(x) = x + cosx – a then ______.


Function f(x) = x100 + sinx – 1 is increasing for all x ∈ ______.


Let f : R `rightarrow` R be a positive increasing function with `lim_(x rightarrow ∞) (f(3x))/(f(x))` = 1 then `lim_(x rightarrow ∞) (f(2x))/(f(x))` = ______.


The function f(x) = tan–1(sin x + cos x) is an increasing function in ______.


A function f is said to be increasing at a point c if ______.


Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly increasing in ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×