Advertisements
Advertisements
प्रश्न
Prove that f(x) = ax + b, where a, b are constants and a > 0 is an increasing function on R ?
उत्तर
\[\text { Here }, \]
\[f\left( x \right) = ax + b\]
\[\text { Let } x_1 , x_2 \text { in R such that } x_1 < x_2 . \text { Then },\]
\[ x_1 < x_2 \]
\[ \Rightarrow a x_1 < a x_2 \left[ \because a>0 \right]\]
\[ \Rightarrow a x_1 + b < a x_2 + b\]
\[ \Rightarrow f\left( x_1 \right) < f\left( x_2 \right)\]
\[ \therefore x_1 < x_2 \]
\[ \Rightarrow f\left( x_1 \right) < f\left( x_2 \right), \forall x_1 , x_2 \in R \]
\[\text { So },f\left( x \right) \text { is increasing on R } .\]
APPEARS IN
संबंधित प्रश्न
Test whether the function is increasing or decreasing.
f(x) = `"x" -1/"x"`, x ∈ R, x ≠ 0,
Show that the function given by f(x) = 3x + 17 is strictly increasing on R.
Find the intervals in which the following functions are strictly increasing or decreasing:
10 − 6x − 2x2
Show that y = `log(1+x) - (2x)/(2+x), x> - 1`, is an increasing function of x throughout its domain.
Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.
Let f be a function defined on [a, b] such that f '(x) > 0, for all x ∈ (a, b). Then prove that f is an increasing function on (a, b).
Find the interval in which the following function are increasing or decreasing f(x) = (x − 1) (x − 2)2 ?
Show that f(x) = sin x is increasing on (0, π/2) and decreasing on (π/2, π) and neither increasing nor decreasing in (0, π) ?
Show that f(x) = x3 − 15x2 + 75x − 50 is an increasing function for all x ∈ R ?
Show that f(x) = x9 + 4x7 + 11 is an increasing function for all x ∈ R ?
State when a function f(x) is said to be increasing on an interval [a, b]. Test whether the function f(x) = x2 − 6x + 3 is increasing on the interval [4, 6] ?
The function f(x) = 2 log (x − 2) − x2 + 4x + 1 increases on the interval
Let f(x) = x3 + ax2 + bx + 5 sin2x be an increasing function on the set R. Then, a and b satisfy.
The function \[f\left( x \right) = \log_e \left( x^3 + \sqrt{x^6 + 1} \right)\] is of the following types:
Let f(x) = x3 − 6x2 + 15x + 3. Then,
Function f(x) = | x | − | x − 1 | is monotonically increasing when
The total cost of manufacturing x articles is C = 47x + 300x2 − x4. Find x, for which average cost is increasing.
Test whether the following functions are increasing or decreasing : f(x) = 2 – 3x + 3x2 – x3, x ∈ R.
show that f(x) = `3x + (1)/(3x)` is increasing in `(1/3, 1)` and decreasing in `(1/9, 1/3)`.
Prove that y = `(4sinθ)/(2 + cosθ) - θ` is an increasing function if `θ ∈[0, pi/2]`
Find the value of x, such that f(x) is increasing function.
f(x) = x2 + 2x - 5
State whether the following statement is True or False:
The function f(x) = `"x"*"e"^("x" (1 - "x"))` is increasing on `((-1)/2, 1)`.
Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing
If the function f(x) = `7/x - 3`, x ∈ R, x ≠ 0 is a decreasing function, then x ∈ ______
State whether the following statement is True or False:
If the function f(x) = x2 + 2x – 5 is an increasing function, then x < – 1
The values of k for which the function f(x) = kx3 – 6x2 + 12x + 11 may be increasing on R are ______.
The function `1/(1 + x^2)` is increasing in the interval ______
The function f(x) = 4 sin3x – 6 sin2x + 12 sinx + 100 is strictly ______.
2x3 - 6x + 5 is an increasing function, if ____________.
The length of the longest interval, in which the function `3 "sin x" - 4 "sin"^3"x"` is increasing, is ____________.
Let h(x) = f(x) - [f(x)]2 + [f(x)]3 for every real number x. Then ____________.
Function given by f(x) = sin x is strictly increasing in.
The interval in which `y = x^2e^(-x)` is increasing with respect to `x` is
Show that function f(x) = tan x is increasing in `(0, π/2)`.
The function f(x) = tan–1(sin x + cos x) is an increasing function in ______.
The interval in which the function f(x) = `(4x^2 + 1)/x` is decreasing is ______.
If f(x) = `x/(x^2 + 1)` is increasing function then the value of x lies in ______.
In which one of the following intervals is the function f(x) = x3 – 12x increasing?