मराठी

Prove that F(X) = Ax + B, Where A, B Are Constants and a > 0 is an Increasing Function on R ? - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that f(x) = ax + b, where a, b are constants and a > 0 is an increasing function on R ?

बेरीज

उत्तर

\[\text { Here }, \]

\[f\left( x \right) = ax + b\]

\[\text { Let } x_1 , x_2 \text { in R such that } x_1 < x_2 . \text { Then },\]

\[ x_1 < x_2 \]

\[ \Rightarrow a x_1 < a x_2 \left[ \because a>0 \right]\]

\[ \Rightarrow a x_1 + b < a x_2 + b\]

\[ \Rightarrow f\left( x_1 \right) < f\left( x_2 \right)\]

\[ \therefore x_1 < x_2 \]

\[ \Rightarrow f\left( x_1 \right) < f\left( x_2 \right), \forall x_1 , x_2 \in R \]

\[\text { So },f\left( x \right) \text { is increasing on R } .\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 17: Increasing and Decreasing Functions - Exercise 17.1 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 17 Increasing and Decreasing Functions
Exercise 17.1 | Q 3 | पृष्ठ १०

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Test whether the function is increasing or decreasing. 

f(x) = `"x" -1/"x"`, x ∈ R, x ≠ 0, 


Show that the function given by f(x) = 3x + 17 is strictly increasing on R.


Find the intervals in which the following functions are strictly increasing or decreasing:

10 − 6x − 2x2


Show that y = `log(1+x) - (2x)/(2+x), x> -  1`, is an increasing function of x throughout its domain.


Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.


Let f be a function defined on [a, b] such that f '(x) > 0, for all x ∈ (a, b). Then prove that f is an increasing function on (a, b).


Find the interval in which the following function are increasing or decreasing f(x) = (x − 1) (x − 2)?


Show that f(x) = sin x is increasing on (0, π/2) and decreasing on (π/2, π) and neither increasing nor decreasing in (0, π) ?


Show that f(x) = x3 − 15x2 + 75x − 50 is an increasing function for all x ∈ R ?


Show that f(x) = x9 + 4x7 + 11 is an increasing function for all x ∈ R ? 


State when a function f(x) is said to be increasing on an interval [a, b]. Test whether the function f(x) = x2 − 6x + 3 is increasing on the interval [4, 6] ?


The function f(x) = 2 log (x − 2) − x2 + 4x + 1 increases on the interval


Let f(x) = x3 + ax2 + bx + 5 sin2x be an increasing function on the set R. Then, a and b satisfy.


The function \[f\left( x \right) = \log_e \left( x^3 + \sqrt{x^6 + 1} \right)\] is of the following types:


Let f(x) = x3 − 6x2 + 15x + 3. Then,


Function f(x) = | x | − | x − 1 | is monotonically increasing when

 

 

 

 

 

 

 

 

 

 

 


The total cost of manufacturing x articles is C = 47x + 300x2 − x4.  Find x, for which average cost is increasing.


Test whether the following functions are increasing or decreasing : f(x) = 2 – 3x + 3x2 – x3, x ∈ R.


show that f(x) = `3x + (1)/(3x)` is increasing in `(1/3, 1)` and decreasing in `(1/9, 1/3)`.


Prove that y = `(4sinθ)/(2 + cosθ) - θ` is an increasing function if `θ ∈[0, pi/2]`


Find the value of x, such that f(x) is increasing function.

f(x) = x2 + 2x - 5 


State whether the following statement is True or False:

The function f(x) = `"x"*"e"^("x" (1 - "x"))` is increasing on `((-1)/2, 1)`.


Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing


If the function f(x) = `7/x - 3`, x ∈ R, x ≠ 0 is a decreasing function, then x ∈ ______


State whether the following statement is True or False: 

If the function f(x) = x2 + 2x – 5 is an increasing function, then x < – 1


The values of k for which the function f(x) = kx3 – 6x2 + 12x + 11 may be increasing on R are ______.


The function `1/(1 + x^2)` is increasing in the interval ______ 


The function f(x) = 4 sin3x – 6 sin2x + 12 sinx + 100 is strictly ______.


2x3 - 6x + 5 is an increasing function, if ____________.


The length of the longest interval, in which the function `3  "sin x" - 4  "sin"^3"x"` is increasing, is ____________.


Let h(x) = f(x) - [f(x)]2 + [f(x)]3 for every real number x. Then ____________.


Function given by f(x) = sin x is strictly increasing in.


The interval in which `y = x^2e^(-x)` is increasing with respect to `x` is


Show that function f(x) = tan x is increasing in `(0, π/2)`.


The function f(x) = tan–1(sin x + cos x) is an increasing function in ______.


The interval in which the function f(x) = `(4x^2 + 1)/x` is decreasing is ______.


If f(x) = `x/(x^2 + 1)` is increasing function then the value of x lies in ______.


In which one of the following intervals is the function f(x) = x3 – 12x increasing?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×