Advertisements
Advertisements
प्रश्न
Let f be a function defined on [a, b] such that f '(x) > 0, for all x ∈ (a, b). Then prove that f is an increasing function on (a, b).
उत्तर
Let x1, x2, ∈ (a, b) such that x1 < x2 ∈ f (x) is differentiable on (a, b) and [x1, x2] ⊂ (a, b)
∴ f(x) is continuous on [x1, x2] and differentiable on (x1, x2).
∴ According to Lagrange mean theorem,
Here there exists c ∈ (x1, x2) such that
`f'(c) = (f(x_2) - f(x_1))/(x_2 - x_1)` ...(1)
Since for all x ∈ (a, b), f'(x) > 0
∴ In particular, f'(c) > 0
Now, f'(c) > 0 `=> (f(x_2) - f(x_1))/(x_2 - x_1) > 0`
⇒ f(x2) - f(x1) > 0 ...[∵ x2 - x1 > 0 when x1 - x2]
⇒ f(x2) > f(x1)
⇒ f(x1) < f(x2), if x1 < x2
Because x1, x2 are arbitrary points in (a, b).
∴ x1 < x2
⇒ f(x1) < f(x2) for all
x1, x2 ∈ (a, b)
∴ f(x) is increasing in (a, b).
APPEARS IN
संबंधित प्रश्न
Find the intervals in which the following functions are strictly increasing or decreasing:
x2 + 2x − 5
Which of the following functions are strictly decreasing on `(0, pi/2)`?
- cos x
- cos 2x
- cos 3x
- tan x
Show that f(x) = \[\frac{1}{1 + x^2}\] decreases in the interval [0, ∞) and increases in the interval (−∞, 0] ?
Find the interval in which the following function are increasing or decreasing f(x) = 5 + 36x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \log\left( 2 + x \right) - \frac{2x}{2 + x}, x \in R\] ?
Show that f(x) = x − sin x is increasing for all x ∈ R ?
Show that f(x) = cos2 x is a decreasing function on (0, π/2) ?
Show that the function f(x) = sin (2x + π/4) is decreasing on (3π/8, 5π/8) ?
Show that the function x2 − x + 1 is neither increasing nor decreasing on (0, 1) ?
Show that f(x) = x9 + 4x7 + 11 is an increasing function for all x ∈ R ?
State when a function f(x) is said to be increasing on an interval [a, b]. Test whether the function f(x) = x2 − 6x + 3 is increasing on the interval [4, 6] ?
Show that f(x) = sin x − cos x is an increasing function on (−π/4, π/4) ?
Prove that the following function is increasing on R f \[(x) =\]3 \[x^5\] + 40 \[x^3\] + 240\[x\] ?
Prove that the function f given by f(x) = x3 − 3x2 + 4x is strictly increasing on R ?
Find 'a' for which f(x) = a (x + sin x) + a is increasing on R ?
State whether f(x) = tan x − x is increasing or decreasing its domain ?
Let f(x) = x3 + ax2 + bx + 5 sin2x be an increasing function on the set R. Then, a and b satisfy.
In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is
The function f(x) = x9 + 3x7 + 64 is increasing on
Find `dy/dx,if e^x+e^y=e^(x-y)`
For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the value of x for which Total cost is decreasing.
Test whether the following functions are increasing or decreasing : f(x) = 2 – 3x + 3x2 – x3, x ∈ R.
Prove that y = `(4sinθ)/(2 + cosθ) - θ` is an increasing function if `θ ∈[0, pi/2]`
Solve the following : Find the intervals on which the function y = xx, (x > 0) is increasing and decreasing.
For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the values of x for which Revenue is increasing.
Test whether the function f(x) = x3 + 6x2 + 12x − 5 is increasing or decreasing for all x ∈ R
State whether the following statement is True or False:
The function f(x) = `3/x` + 10, x ≠ 0 is decreasing
Find the values of x such that f(x) = 2x3 – 15x2 – 144x – 7 is decreasing function
By completing the following activity, find the values of x such that f(x) = 2x3 – 15x2 – 84x – 7 is decreasing function.
Solution: f(x) = 2x3 – 15x2 – 84x – 7
∴ f'(x) = `square`
∴ f'(x) = 6`(square) (square)`
Since f(x) is decreasing function.
∴ f'(x) < 0
Case 1: `(square)` > 0 and (x + 2) < 0
∴ x ∈ `square`
Case 2: `(square)` < 0 and (x + 2) > 0
∴ x ∈ `square`
∴ f(x) is decreasing function if and only if x ∈ `square`
Show that f(x) = tan–1(sinx + cosx) is an increasing function in `(0, pi/4)`
The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.
Let `"f (x) = x – cos x, x" in "R"`, then f is ____________.
The function `"f"("x") = "log" (1 + "x") - (2"x")/(2 + "x")` is increasing on ____________.
Show that function f(x) = tan x is increasing in `(0, π/2)`.
Read the following passage:
The use of electric vehicles will curb air pollution in the long run. V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2` where t represents the time and t = 1, 2, 3, ...... corresponds to years 2001, 2002, 2003, ...... respectively. |
Based on the above information, answer the following questions:
- Can the above function be used to estimate number of vehicles in the year 2000? Justify. (2)
- Prove that the function V(t) is an increasing function. (2)
The interval in which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.