मराठी

Show that the Function X2 − X + 1 is Neither Increasing Nor Decreasing on (0, 1) ? - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the function x2 − x + 1 is neither increasing nor decreasing on (0, 1) ?

बेरीज

उत्तर

\[f\left( x \right) = x^2 - x + 1\]

\[f'\left( x \right) = 2x - 1\]

\[\text { For f(x) to be increasing, we must have }\]

\[f'\left( x \right) > 0\]

\[ \Rightarrow 2x - 1 > 0\]

\[ \Rightarrow 2x > 1\]

\[ \Rightarrow x > \frac{1}{2}\]

\[ \Rightarrow x \in \left( \frac{1}{2}, 1 \right)\]

\[\text { So,f(x)is increasing on  }\left( \frac{1}{2}, 1 \right) . \]

\[\text{ For f(x) to be decreasing, we must have }\]

\[f'\left( x \right) < 0\]

\[ \Rightarrow 2x - 1 < 0\]

\[ \Rightarrow 2x < 1\]

\[ \Rightarrow x < \frac{1}{2}\]

\[ \Rightarrow x \in \left( 0, \frac{1}{2} \right)\]

\[\text { So,f(x)is decreasing on }\left( 0, \frac{1}{2} \right).\]

\[\text { Since   f(x) is increasing on } \left( \frac{1}{2}, 1 \right) \text { and decreasing on }\left( 0, \frac{1}{2} \right),f\left( x \right) \text { is neither increasing nor decreasing on } (0, 1).\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 17: Increasing and Decreasing Functions - Exercise 17.2 [पृष्ठ ३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 17 Increasing and Decreasing Functions
Exercise 17.2 | Q 19 | पृष्ठ ३४

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Show that the function `f(x) = x^3 - 3x^2 + 6x - 100` is increasing on R


Show that the function given by f(x) = sin x is

  1. strictly increasing in `(0, pi/2)`
  2. strictly decreasing in `(pi/2, pi)`
  3. neither increasing nor decreasing in (0, π)

Find the intervals in which the following functions are strictly increasing or decreasing:

−2x3 − 9x2 − 12x + 1


Prove that the function f given by f(x) = log cos x is strictly decreasing on `(0, pi/2)` and strictly increasing on `((3pi)/2, 2pi).`


Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.


Let f be a function defined on [a, b] such that f '(x) > 0, for all x ∈ (a, b). Then prove that f is an increasing function on (a, b).


Water is dripping out from a conical funnel of semi-verticle angle `pi/4` at the uniform rate of `2 cm^2/sec`in the surface, through a tiny hole at the vertex of the bottom. When the slant height of the water level is 4 cm, find the rate of decrease of the slant height of the water.


Prove that f(x) = ax + b, where a, b are constants and a < 0 is a decreasing function on R ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{10} x^4 - \frac{4}{5} x^3 - 3 x^2 + \frac{36}{5}x + 11\] ?


Find the interval in which the following function are increasing or decreasing  f(x) = x4 − 4x3 + 4x2 + 15 ?


Show that f(x) = log sin x is increasing on (0, π/2) and decreasing on (π/2, π) ?


Prove that the following function is increasing on R f \[f\left( x \right) = 4 x^3 - 18 x^2 + 27x - 27\] ?


Prove that the function f given by f(x) = log cos x is strictly increasing on (−π/2, 0) and strictly decreasing on (0, π/2) ?


The function f(x) = cot−1 x + x increases in the interval


In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is


f(x) = 2x − tan−1 x − log \[\left\{ x + \sqrt{x^2 + 1} \right\}\] is monotonically increasing when

 


If the function f(x) = x2 − kx + 5 is increasing on [2, 4], then


The radius r of a right circular cylinder is increasing uniformly at the rate of 0·3 cm/s and its height h is decreasing at the rate of 0·4 cm/s. When r = 3·5 cm and h = 7 cm, find the rate of change of the curved surface area of the cylinder. \[\left[ \text{ Use } \pi = \frac{22}{7} \right]\]


The consumption expenditure Ec of a person with the income x. is given by Ec = 0.0006x2 + 0.003x. Find MPC, MPS, APC and APS when the income x = 200.


Find `dy/dx,if e^x+e^y=e^(x-y)`


Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).


The total cost of manufacturing x articles is C = 47x + 300x2 − x4.  Find x, for which average cost is increasing.


Find the values of x for which the following functions are strictly decreasing : f(x) = `x + (25)/x`


Find the values of x for which the following functions are strictly decreasing : f(x) = x3 – 9x2 + 24x + 12


Find the values of x for which the function f(x) = x3 – 12x2 – 144x + 13 (a) increasing (b) decreasing


Show that f(x) = x – cos x is increasing for all x.


Find the value of x, such that f(x) is increasing function.

f(x) = 2x3 - 15x2 - 144x - 7 


Find the value of x, such that f(x) is decreasing function.

f(x) = 2x3 – 15x2 – 84x – 7 


The function f(x) = `x - 1/x`, x ∈ R, x ≠ 0 is increasing


If f(x) = [x], where [x] is the greatest integer not greater than x, then f'(1') = ______.


The function f(x) = x3 - 3x is ______.


The sides of a square are increasing at the rate of 0.2 cm/sec. When the side is 25cm long, its area is increasing at the rate of ______


For every value of x, the function f(x) = `1/7^x` is ______ 


The function f(x) = 4 sin3x – 6 sin2x + 12 sinx + 100 is strictly ______.


The function f (x) = 2 – 3 x is ____________.


The function f(x) = x2 – 2x is increasing in the interval ____________.


Let f (x) = tan x – 4x, then in the interval `[- pi/3, pi/3], "f"("x")` is ____________.


The function `"f"("x") = "log" (1 + "x") - (2"x")/(2 + "x")` is increasing on ____________.


If f(x) = x3 + 4x2 + λx + 1(λ ∈ R) is a monotonically decreasing function of x in the largest possible interval `(–2, (–2)/3)` then ______.


Let f(x) be a function such that; f'(x) = log1/3(log3(sinx + a)) (where a ∈ R). If f(x) is decreasing for all real values of x then the exhaustive solution set of a is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×