Advertisements
Advertisements
प्रश्न
Find the value of x, such that f(x) is increasing function.
f(x) = 2x3 - 15x2 - 144x - 7
उत्तर
f(x) = 2x3 - 15x2 - 144x - 7
∴ f'(x) = 6x2 - 30x - 144
f(x) is an increasing function, if f'(x) > 0
∴ 6(x2 - 5x - 24) > 0
∴ 6(x + 3)(x - 8) > 0
∴ (x + 3)(x - 8) > 0
ab > 0 ⇔ a > 0 and b > 0 or a < 0 or b < 0
∴ Either (x + 3) > 0 and (x – 8) > 0 or
(x + 3) < 0 and (x – 8) < 0
Case 1: x + 3 > 0 and x - 8 > 0
∴ x > -3 and x > 8
∴ x > 8
Case 2: x + 3 < 0 and x - 8 < 0
∴ x < - 3 or x < 8
∴ x < - 3
Thus, f(x) is an increasing function for x < -3, or x > 8 i.e., (-∞, - 3) ∪ (8, ∞).
APPEARS IN
संबंधित प्रश्न
Find the value of c in Rolle's theorem for the function `f(x) = x^3 - 3x " in " (-sqrt3, 0)`
On which of the following intervals is the function f given byf(x) = x100 + sin x –1 strictly decreasing?
Find the intervals in which the function f given by `f(x) = (4sin x - 2x - x cos x)/(2 + cos x)` is (i) increasing (ii) decreasing.
Show that the function f(x) = 4x3 - 18x2 + 27x - 7 is always increasing on R.
Water is dripping out from a conical funnel of semi-verticle angle `pi/4` at the uniform rate of `2 cm^2/sec`in the surface, through a tiny hole at the vertex of the bottom. When the slant height of the water level is 4 cm, find the rate of decrease of the slant height of the water.
Show that f(x) = \[\frac{1}{1 + x^2}\] decreases in the interval [0, ∞) and increases in the interval (−∞, 0] ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 12x2 + 18x + 15 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \log\left( 2 + x \right) - \frac{2x}{2 + x}, x \in R\] ?
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π) ?
Show that the function f(x) = cot \[-\] l(sinx + cosx) is decreasing on \[\left( 0, \frac{\pi}{4} \right)\] and increasing on \[\left( 0, \frac{\pi}{4} \right)\] ?
Show that f(x) = tan−1 x − x is a decreasing function on R ?
Let f defined on [0, 1] be twice differentiable such that | f (x) | ≤ 1 for all x ∈ [0, 1]. If f(0) = f(1), then show that | f'(x) | < 1 for all x ∈ [ 0, 1] ?
The interval of increase of the function f(x) = x − ex + tan (2π/7) is
Function f(x) = | x | − | x − 1 | is monotonically increasing when
Find the intervals in which the function \[f(x) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] is
(a) strictly increasing
(b) strictly decreasing
Using truth table show that ∼ (p → ∼ q) ≡ p ∧ q
For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the value of x for which Total cost is decreasing.
If the demand function is D = 50 - 3p - p2, find the elasticity of demand at (a) p = 5 (b) p = 2 , Interpret your result.
Find the values of x for which the function f(x) = x3 – 12x2 – 144x + 13 (a) increasing (b) decreasing
Test whether the following function f(x) = 2 – 3x + 3x2 – x3, x ∈ R is increasing or decreasing
Find the values of x for which the function f(x) = 2x3 – 6x2 + 6x + 24 is strictly increasing
The function f(x) = `x - 1/x`, x ∈ R, x ≠ 0 is increasing
State whether the following statement is True or False:
If the function f(x) = x2 + 2x – 5 is an increasing function, then x < – 1
By completing the following activity, find the values of x such that f(x) = 2x3 – 15x2 – 84x – 7 is decreasing function.
Solution: f(x) = 2x3 – 15x2 – 84x – 7
∴ f'(x) = `square`
∴ f'(x) = 6`(square) (square)`
Since f(x) is decreasing function.
∴ f'(x) < 0
Case 1: `(square)` > 0 and (x + 2) < 0
∴ x ∈ `square`
Case 2: `(square)` < 0 and (x + 2) > 0
∴ x ∈ `square`
∴ f(x) is decreasing function if and only if x ∈ `square`
A man of height 1.9 m walks directly away from a lamp of height 4.75m on a level road at 6m/s. The rate at which the length of his shadow is increasing is
If f(x) = [x], where [x] is the greatest integer not greater than x, then f'(1') = ______.
f(x) = `{{:(0"," x = 0 ), (x - 3"," x > 0):}` The function f(x) is ______
If f(x) = `x^(3/2) (3x - 10)`, x ≥ 0, then f(x) is increasing in ______.
The function f(x) = `(2x^2 - 1)/x^4`, x > 0, decreases in the interval ______.
The function f(x) = x2 – 2x is increasing in the interval ____________.
If f(x) = sin x – cos x, then interval in which function is decreasing in 0 ≤ x ≤ 2 π, is:
The function f(x) = tan–1(sin x + cos x) is an increasing function in ______.
Find the interval/s in which the function f : R `rightarrow` R defined by f(x) = xex, is increasing.
The intevral in which the function f(x) = 5 + 36x – 3x2 increases will be ______.
Find the values of x for which the function f(x) = `x/(x^2 + 1)` is strictly decreasing.