मराठी

Let F Defined on [0, 1] Be Twice Differentiable Such that | F"(X) | ≤ 1 for All X ∈ [0, 1]. If F(0) = F(1), Then Show that | F'(X) | < 1 for All X ∈ [ 0, 1] ? - Mathematics

Advertisements
Advertisements

प्रश्न

Let f defined on [0, 1] be twice differentiable such that | f (x) | ≤ 1 for all x ∈ [0, 1]. If f(0) = f(1), then show that | f'(x) | < 1 for all x ∈ [ 0, 1] ?

बेरीज

उत्तर

If a function is continuous and differentiable and f(0) = f(1) in given domain x ∈ [0, 1],
then by Rolle's Theorem;
f'(x) = 0 for some x ∈ [0, 1]
Given: | f"(x)| ≤ 1
On integrating both sides we get,
|f'(x)| ≤ x
Now, within interval x ∈ [0, 1]
We get, | f' (x)| < 1.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 17: Increasing and Decreasing Functions - Exercise 17.2 [पृष्ठ ३५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 17 Increasing and Decreasing Functions
Exercise 17.2 | Q 38 | पृष्ठ ३५

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Test whether the function is increasing or decreasing. 

f(x) = `"x" -1/"x"`, x ∈ R, x ≠ 0, 


Show that the function given by f(x) = sin x is

  1. strictly increasing in `(0, pi/2)`
  2. strictly decreasing in `(pi/2, pi)`
  3. neither increasing nor decreasing in (0, π)

Prove that the function f given by f(x) = x2 − x + 1 is neither strictly increasing nor strictly decreasing on (−1, 1).


Show that the function f(x) = 4x3 - 18x2 + 27x - 7 is always increasing on R.


Show that f(x) = \[\frac{1}{x}\] is a decreasing function on (0, ∞) ?


Without using the derivative show that the function f (x) = 7x − 3 is strictly increasing function on R ?


Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 − 36x + 2 ?


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 15x2 + 36x + 1 ?


Find the interval in which the following function are increasing or decreasing f(x) = (x − 1) (x − 2)?


Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x ?


Find the interval in which the following function are increasing or decreasing f(x) = x8 + 6x2  ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \log\left( 2 + x \right) - \frac{2x}{2 + x}, x \in R\] ?


Find the intervals in which f(x) = sin x − cos x, where 0 < x < 2π is increasing or decreasing ?


Show that f(x) = e1/x, x ≠ 0 is a decreasing function for all x ≠ 0 ?


Show that f(x) = x3 − 15x2 + 75x − 50 is an increasing function for all x ∈ R ?


Find the values of b for which the function f(x) = sin x − bx + c is a decreasing function on R ?


Find 'a' for which f(x) = a (x + sin x) + a is increasing on R ?


Find the values of 'a' for which the function f(x) = sin x − ax + 4 is increasing function on R ?


Write the set of values of a for which f(x) = cos x + a2 x + b is strictly increasing on R ?


The function \[f\left( x \right) = \log_e \left( x^3 + \sqrt{x^6 + 1} \right)\] is of the following types:


If the function f(x) = cos |x| − 2ax + b increases along the entire number scale, then

 


Function f(x) = loga x is increasing on R, if


Let ϕ(x) = f(x) + f(2a − x) and f"(x) > 0 for all x ∈ [0, a]. Then, ϕ (x)


Find the intervals in which the function \[f(x) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] is

(a) strictly increasing
(b) strictly decreasing


If x = cos2 θ and y = cot θ then find `dy/dx  at  θ=pi/4` 


Find the value of x, such that f(x) is increasing function.

f(x) = 2x3 - 15x2 - 144x - 7 


For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the values of x for which Revenue is increasing.


Test whether the following function f(x) = 2 – 3x + 3x2 – x3, x ∈ R is increasing or decreasing


The total cost function for production of articles is given as C = 100 + 600x – 3x2, then the values of x for which the total cost is decreasing is  ______


A ladder 20 ft Jong leans against a vertical wall. The top-end slides downwards at the rate of 2 ft per second. The rate at which the lower end moves on a horizontal floor when it is 12 ft from the wall is ______ 


Determine for which values of x, the function y = `x^4 – (4x^3)/3` is increasing and for which values, it is decreasing.


Which of the following functions is decreasing on `(0, pi/2)`?


Let f be a real valued function defined on (0, 1) ∪ (2, 4) such that f '(x) = 0 for every x, then ____________.


The length of the longest interval, in which the function `3  "sin x" - 4  "sin"^3"x"` is increasing, is ____________.


Function given by f(x) = sin x is strictly increasing in.


Let f: [0, 2]→R be a twice differentiable function such that f"(x) > 0, for all x ∈( 0, 2). If `phi` (x) = f(x) + f(2 – x), then `phi` is ______.


If f(x) = x5 – 20x3 + 240x, then f(x) satisfies ______.


y = log x satisfies for x > 1, the inequality ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×