मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Test whether the function is increasing or decreasing. f(x) = x-1x, x ∈ R, x ≠ 0, - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Test whether the function is increasing or decreasing. 

f(x) = `"x" -1/"x"`, x ∈ R, x ≠ 0, 

बेरीज

उत्तर

f(x) `= "x" - 1/"x", "x" in "R"`

`therefore "f"'("x") = 1 - (- 1/"x"^2) = 1 + 1/"x"^2`

`∵ "x" ne 0,` for all values of x, `"x"^2>0`

`therefore 1/"x"^2 > 0, 1 + 1/"x"^2` is always positive

thus f'(x)>o , for all x ∈ R

Hence f(x) is increasing function.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Applications of Derivatives - Exercise 4.2 [पृष्ठ १०६]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 4 Applications of Derivatives
Exercise 4.2 | Q 1.2 | पृष्ठ १०६

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Price P for demand D is given as P = 183 +120D - 3D2 Find D for which the price is increasing


The function f (x) = x3 – 3x2 + 3x – 100, x∈ R is _______.

(A) increasing

(B) decreasing

(C) increasing and decreasing

(D) neither increasing nor decreasing


Show that the function given by f(x) = 3x + 17 is strictly increasing on R.


Show that the function given by f(x) = sin x is

  1. strictly increasing in `(0, pi/2)`
  2. strictly decreasing in `(pi/2, pi)`
  3. neither increasing nor decreasing in (0, π)

Find the intervals in which the function f given by f(x) = 2x2 − 3x is

  1. strictly increasing
  2. strictly decreasing

Find the intervals in which the function f given by f(x) = 2x3 − 3x2 − 36x + 7 is

  1. Strictly increasing
  2. Strictly decreasing

Find the intervals in which the following functions are strictly increasing or decreasing:

−2x3 − 9x2 − 12x + 1


Show that y = `log(1+x) - (2x)/(2+x), x> -  1`, is an increasing function of x throughout its domain.


Find the values of x for  `y = [x(x - 2)]^2` is an increasing function.


On which of the following intervals is the function f given byf(x) = x100 + sin x –1 strictly decreasing?


Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.


Find the intervals in which the function f given by `f(x) = x^3 + 1/x^3 x != 0`, is (i) increasing (ii) decreasing.


Prove that the function f(x) = loga x is increasing on (0, ∞) if a > 1 and decreasing on (0, ∞), if 0 < a < 1 ?


Prove that f(x) = ax + b, where a, b are constants and a > 0 is an increasing function on R ?


Find the interval in which the following function are increasing or decreasing  f(x) = 6 − 9x − x2  ?


Find the interval in which the following function are increasing or decreasing f(x) = 5 + 36x + 3x2 − 2x?


Find the interval in which the following function are increasing or decreasing  f(x) = 2x3 − 24x + 107  ?


Find the interval in which the following function are increasing or decreasing f(x) = −2x3 − 9x2 − 12x + 1  ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{10} x^4 - \frac{4}{5} x^3 - 3 x^2 + \frac{36}{5}x + 11\] ?


Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{x^4}{4} + \frac{2}{3} x^3 - \frac{5}{2} x^2 - 6x + 7\] ?


Find the interval in which the following function are increasing or decreasing  f(x) =  \[5 x^\frac{3}{2} - 3 x^\frac{5}{2}\]  x > 0 ?


Find the interval in which the following function are increasing or decreasing f(x) = x8 + 6x2  ?


Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 + 9x + 15 ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = 3 x^4 - 4 x^3 - 12 x^2 + 5\] ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \log\left( 2 + x \right) - \frac{2x}{2 + x}, x \in R\] ?


Determine the values of x for which the function f(x) = x2 − 6x + 9 is increasing or decreasing. Also, find the coordinates of the point on the curve y = x2 − 6x + 9 where the normal is parallel to the line y = x + 5 ? 


Show that f(x) = e2x is increasing on R.


Show that f(x) = x3 − 15x2 + 75x − 50 is an increasing function for all x ∈ R ?


Show that f(x) = sin x is an increasing function on (−π/2, π/2) ?


Show that f(x) = tan x is an increasing function on (−π/2, π/2) ?


Show that the function f(x) = cot \[-\] l(sinx + cosx) is decreasing on \[\left( 0, \frac{\pi}{4} \right)\] and increasing on \[\left( 0, \frac{\pi}{4} \right)\] ?


Show that f(x) = (x − 1) ex + 1 is an increasing function for all x > 0 ?


Show that the function x2 − x + 1 is neither increasing nor decreasing on (0, 1) ?


Show that f(x) = x9 + 4x7 + 11 is an increasing function for all x ∈ R ? 


Determine whether f(x) = −x/2 + sin x is increasing or decreasing on (−π/3, π/3) ?


Find the intervals in which f(x) = log (1 + x) −\[\frac{x}{1 + x}\] is increasing or decreasing ?


Find the intervals in which f(x) = (x + 2) e−x is increasing or decreasing ?


Prove that the following function is increasing on R f \[f\left( x \right) = 4 x^3 - 18 x^2 + 27x - 27\] ?


Let f defined on [0, 1] be twice differentiable such that | f (x) | ≤ 1 for all x ∈ [0, 1]. If f(0) = f(1), then show that | f'(x) | < 1 for all x ∈ [ 0, 1] ?


What are the values of 'a' for which f(x) = ax is increasing on R ?


What are the values of 'a' for which f(x) = ax is decreasing on R ? 


Find the values of 'a' for which the function f(x) = sin x − ax + 4 is increasing function on R ?


Write the interval in which f(x) = sin x + cos x, x ∈ [0, π/2] is increasing ?


The function \[f\left( x \right) = \log_e \left( x^3 + \sqrt{x^6 + 1} \right)\] is of the following types:


Function f(x) = cos x − 2 λ x is monotonic decreasing when


Function f(x) = x3 − 27x + 5 is monotonically increasing when


Every invertible function is


The function \[f\left( x \right) = \frac{\lambda \sin x + 2 \cos x}{\sin x + \cos x}\] is increasing, if

 


Function f(x) = loga x is increasing on R, if


The consumption expenditure Ec of a person with the income x. is given by Ec = 0.0006x2 + 0.003x. Find MPC, MPS, APC and APS when the income x = 200.


Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).


For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the value of x for which Total cost is decreasing.


Prove that the function f : N → N, defined by f(x) = x2 + x + 1 is one-one but not onto. Find the inverse of f: N → S, where S is range of f.


Test whether the following functions are increasing or decreasing : f(x) = 2 – 3x + 3x2 – x3, x ∈ R.


Find the values of x for which the following functions are strictly increasing:

f(x) = 3 + 3x – 3x2 + x3


Find the values of x for which the following functions are strictly decreasing : f(x) = x3 – 9x2 + 24x + 12


Find the values of x for which f(x) = `x/(x^2 + 1)` is (a) strictly increasing (b) decreasing.


show that f(x) = `3x + (1)/(3x)` is increasing in `(1/3, 1)` and decreasing in `(1/9, 1/3)`.


Prove that y = `(4sinθ)/(2 + cosθ) - θ` is an increasing function if `θ ∈[0, pi/2]`


Solve the following : Find the intervals on which the function y = xx, (x > 0) is increasing and decreasing.


Test whether the following function is increasing or decreasing.

f(x) = `7/"x" - 3`, x ∈ R, x ≠ 0


Find the value of x, such that f(x) is increasing function.

f(x) = 2x3 - 15x2 - 144x - 7 


Find the value of x, such that f(x) is decreasing function.

f(x) = 2x3 – 15x2 – 84x – 7 


Find the value of x such that f(x) is decreasing function.

f(x) = x4 − 2x3 + 1


Prove that function f(x) = `x - 1/x`, x ∈ R and x ≠ 0 is increasing function


Show that the function f(x) = x3 + 10x + 7 for x ∈ R is strictly increasing


Test whether the following function f(x) = 2 – 3x + 3x2 – x3, x ∈ R is increasing or decreasing


Find the values of x, for which the function f(x) = x3 + 12x2 + 36𝑥 + 6 is monotonically decreasing


The price P for the demand D is given as P = 183 + 120D − 3D2, then the value of D for which price is increasing, is ______.


The slope of tangent at any point (a, b) is also called as ______.


If the function f(x) = `7/x - 3`, x ∈ R, x ≠ 0 is a decreasing function, then x ∈ ______


State whether the following statement is True or False: 

The function f(x) = `3/x` + 10, x ≠ 0 is decreasing


Show that the function f(x) = `(x - 2)/(x + 1)`, x ≠ – 1 is increasing


If f(x) = [x], where [x] is the greatest integer not greater than x, then f'(1') = ______.


A ladder 20 ft Jong leans against a vertical wall. The top-end slides downwards at the rate of 2 ft per second. The rate at which the lower end moves on a horizontal floor when it is 12 ft from the wall is ______ 


f(x) = `{{:(0","                 x = 0 ), (x - 3","   x > 0):}` The function f(x) is ______


The sides of a square are increasing at the rate of 0.2 cm/sec. When the side is 25cm long, its area is increasing at the rate of ______


For which interval the given function f(x) = 2x3 – 9x2 + 12x + 7 is increasing?


Let f(x) = x3 + 9x2 + 33x + 13, then f(x) is ______.


If f(x) = x3 – 15x2 + 84x – 17, then ______.


Show that for a ≥ 1, f(x) = `sqrt(3)` sinx – cosx – 2ax + b ∈ is decreasing in R


The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.


Let f be a real valued function defined on (0, 1) ∪ (2, 4) such that f '(x) = 0 for every x, then ____________.


In case of decreasing functions, slope of tangent and hence derivative is ____________.


The function f(x) = x2 – 2x is increasing in the interval ____________.


The function f (x) = x2, for all real x, is ____________.


The function f(x) = mx + c where m, c are constants, is a strict decreasing function for all `"x" in "R"` , if ____________.


In `(0, pi/2),`  the function f (x) = `"x"/"sin x"` is ____________.


Let f (x) = tan x – 4x, then in the interval `[- pi/3, pi/3], "f"("x")` is ____________.


2x3 - 6x + 5 is an increasing function, if ____________.


The function f(x) = tan-1 (sin x + cos x) is an increasing function in:


The length of the longest interval, in which the function `3  "sin x" - 4  "sin"^3"x"` is increasing, is ____________.


Let h(x) = f(x) - [f(x)]2 + [f(x)]3 for every real number x. Then ____________.


Which of the following graph represent the strictly increasing function.


Find the interval in which the function `f` is given by `f(x) = 2x^2 - 3x` is strictly decreasing.


State whether the following statement is true or false.

If f'(x) > 0 for all x ∈ (a, b) then f(x) is decreasing function in the interval (a, b).


Let f: [0, 2]→R be a twice differentiable function such that f"(x) > 0, for all x ∈( 0, 2). If `phi` (x) = f(x) + f(2 – x), then `phi` is ______.


The function f(x) = `|x - 1|/x^2` is monotonically decreasing on ______.


A function f is said to be increasing at a point c if ______.


Find the interval/s in which the function f : R `rightarrow` R defined by f(x) = xex, is increasing.


The intevral in which the function f(x) = 5 + 36x – 3x2 increases will be ______.


Find the values of x for which the function f(x) = `x/(x^2 + 1)` is strictly decreasing.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×