मराठी

The Function F ( X ) = λ Sin X + 2 Cos X Sin X + Cos X is Increasing, If - Mathematics

Advertisements
Advertisements

प्रश्न

The function \[f\left( x \right) = \frac{\lambda \sin x + 2 \cos x}{\sin x + \cos x}\] is increasing, if

 

पर्याय

  • λ < 1

  • λ > 1

  • λ < 2

  • λ > 2

MCQ

उत्तर

λ > 2

\[f\left( x \right) = \frac{\lambda \sin x + 2 \cos x}{\sin x + \cos x}\]

\[f'\left( x \right) = \frac{\left( \sin x + \cos x \right)\left( \lambda \cos x - 2 \sin x \right) + \left( \lambda \sin x + 2 \cos x \right)\left( \cos x - \sin x \right)}{\left( \sin x + \cos x \right)^2}\]

\[ = \frac{\lambda\cos x \sin x + \lambda \cos^2 x - 2 \sin^2 x - 2 \sin x \cos x - \lambda\sin x \cos x - 2 \cos^2 x + \lambda \sin^2 x + 2 \cos x \sin x}{\left( \sin x + \cos x \right)^2}\]

\[ = \frac{- 2 \left( \sin^2 x + \cos^2 x \right) + \lambda \left( \sin^2 x + \cos^2 x \right)}{\left( \sin x + \cos x \right)^2}\]

\[ = \frac{- 2 + \lambda}{\left( \sin x + \cos x \right)^2}\]

\[\text { For f(x) to be increasing, we must have }\]

\[f'\left( x \right) > 0\]

\[ \Rightarrow \frac{- 2 + \lambda}{\left( \sin x + \cos x \right)^2} > 0 \]

\[ \Rightarrow \lambda - 2 > 0 \left[ \because \left( \sin x + \cos x \right)^2 > 0 \right]\]

\[ \Rightarrow \lambda > 2\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 17: Increasing and Decreasing Functions - Exercise 17.4 [पृष्ठ ४१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 17 Increasing and Decreasing Functions
Exercise 17.4 | Q 23 | पृष्ठ ४१

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the intervals in which the function f given by f(x) = 2x2 − 3x is

  1. strictly increasing
  2. strictly decreasing

Find the intervals in which the following functions are strictly increasing or decreasing:

x2 + 2x − 5


Find the intervals in which the following functions are strictly increasing or decreasing:

6 − 9x − x2


Prove that  y = `(4sin theta)/(2 + cos theta) - theta` is an increasing function of θ in `[0, pi/2]`


Prove that the logarithmic function is strictly increasing on (0, ∞).


Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.


Find the intervals in which the function `f(x) = x^4/4 - x^3 - 5x^2 + 24x + 12`  is (a) strictly increasing, (b) strictly decreasing


Prove that f(x) = ax + b, where a, b are constants and a > 0 is an increasing function on R ?


Show that f(x) = \[\frac{1}{x}\] is a decreasing function on (0, ∞) ?


Find the interval in which the following function are increasing or decreasing f(x) = 10 − 6x − 2x2  ?


Find the interval in which the following function are increasing or decreasing  f(x) = x2 + 2x − 5  ?


Find the interval in which the following function are increasing or decreasing   f(x) = 2x3 − 12x2 + 18x + 15 ?


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 15x2 + 36x + 1 ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{x^4}{4} + \frac{2}{3} x^3 - \frac{5}{2} x^2 - 6x + 7\] ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \log\left( 2 + x \right) - \frac{2x}{2 + x}, x \in R\] ?


Prove that the function f(x) = x3 − 6x2 + 12x − 18 is increasing on R ?


Show that f(x) = x2 − x sin x is an increasing function on (0, π/2) ?


Find the values of b for which the function f(x) = sin x − bx + c is a decreasing function on R ?


State whether f(x) = tan x − x is increasing or decreasing its domain ?


Let f(x) = x3 + ax2 + bx + 5 sin2x be an increasing function on the set R. Then, a and b satisfy.


The function \[f\left( x \right) = \log_e \left( x^3 + \sqrt{x^6 + 1} \right)\] is of the following types:


Function f(x) = 2x3 − 9x2 + 12x + 29 is monotonically decreasing when


Function f(x) = loga x is increasing on R, if


Show that the function f given by f(x) = tan–1 (sin x + cos x) is decreasing for all \[x \in \left( \frac{\pi}{4}, \frac{\pi}{2} \right) .\]


The price P for demand D is given as P = 183 + 120 D – 3D2.
Find D for which the price is increasing.


Using truth table show that ∼ (p → ∼ q) ≡ p ∧ q 


Test whether the following functions are increasing or decreasing : f(x) = x3 – 6x2 + 12x – 16, x ∈ R.


Find the values of x for which the following functions are strictly decreasing : f(x) = `x + (25)/x`


Choose the correct alternative.

The function f(x) = x3 - 3x2 + 3x - 100, x ∈ R is


Show that function f(x) =`("x - 2")/("x + 1")`, x ≠ -1 is increasing.


If the function f(x) = `7/x - 3`, x ∈ R, x ≠ 0 is a decreasing function, then x ∈ ______


The function f(x) = `x - 1/x`, x ∈ R, x ≠ 0 is increasing


Let `"f (x) = x – cos x, x" in "R"`, then f is ____________.


The function `"f"("x") = "log" (1 + "x") - (2"x")/(2 + "x")` is increasing on ____________.


If f(x) = x3 + 4x2 + λx + 1(λ ∈ R) is a monotonically decreasing function of x in the largest possible interval `(–2, (–2)/3)` then ______.


If f(x) = x5 – 20x3 + 240x, then f(x) satisfies ______.


If f(x) = `x/(x^2 + 1)` is increasing function then the value of x lies in ______.


Find the interval in which the function f(x) = x2e–x is strictly increasing or decreasing.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×