Advertisements
Advertisements
प्रश्न
Function f(x) = ax is increasing on R, if
पर्याय
a > 0
a < 0
0 < a < 1
a > 1
उत्तर
a > 1
\[f\left( x \right) = a^x \]
\[f'\left( x \right) = a^x \log a\]
\[\text { Given: f(x) is increasing on R .} \]
\[ \Rightarrow f'\left( x \right) > 0\]
\[ \Rightarrow a^x \log a > 0\]
\[ \Rightarrow a^x > 0 \left( \text { Logarithmic function is defined for positive values of a } \right)\]
\[\text { We know,} \]
\[ a^x \log a > 0\]
\[\text { It can be possible when} a^x > 0 \text { and } \log a > 0 or a^x < 0 and \log a < 0 \left( \text { Not possible, logarithmic function is defined for positive values of a } \right)\]
\[ \Rightarrow \log a > 0\]
\[ \Rightarrow a > 1\]
\[\text { So,f (x) is increasing when }a> 1 .\]
APPEARS IN
संबंधित प्रश्न
The side of an equilateral triangle is increasing at the rate of 2 cm/s. At what rate is its area increasing when the side of the triangle is 20 cm ?
Test whether the function is increasing or decreasing.
f(x) = `"x" -1/"x"`, x ∈ R, x ≠ 0,
Find the intervals in which the function f given by f(x) = 2x3 − 3x2 − 36x + 7 is
- Strictly increasing
- Strictly decreasing
Find the intervals in which the following functions are strictly increasing or decreasing:
x2 + 2x − 5
Prove that the function f given by f(x) = x2 − x + 1 is neither strictly increasing nor strictly decreasing on (−1, 1).
The interval in which y = x2 e–x is increasing is ______.
Prove that the function f(x) = loge x is increasing on (0, ∞) ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 12x2 + 18x + 15 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 + 9x2 + 12x + 20 ?
Find the interval in which the following function are increasing or decreasing f(x) = −2x3 − 9x2 − 12x + 1 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{x^4}{4} + \frac{2}{3} x^3 - \frac{5}{2} x^2 - 6x + 7\] ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = 3 x^4 - 4 x^3 - 12 x^2 + 5\] ?
Show that f(x) = x3 − 15x2 + 75x − 50 is an increasing function for all x ∈ R ?
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π) ?
Prove that the following function is increasing on R f \[(x) =\]3 \[x^5\] + 40 \[x^3\] + 240\[x\] ?
Find the value(s) of a for which f(x) = x3 − ax is an increasing function on R ?
Let \[f\left( x \right) = \tan^{- 1} \left( g\left( x \right) \right),\],where g (x) is monotonically increasing for 0 < x < \[\frac{\pi}{2} .\] Then, f(x) is
The function f(x) = x2 e−x is monotonic increasing when
Function f(x) = cos x − 2 λ x is monotonic decreasing when
Function f(x) = | x | − | x − 1 | is monotonically increasing when
If the function f(x) = x2 − kx + 5 is increasing on [2, 4], then
Find the intervals in which the function \[f(x) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] is
(a) strictly increasing
(b) strictly decreasing
Find `dy/dx,if e^x+e^y=e^(x-y)`
For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the value of x for which Total cost is decreasing.
Find the values of x for which the following functions are strictly decreasing : f(x) = `x + (25)/x`
Find the value of x such that f(x) is decreasing function.
f(x) = x4 − 2x3 + 1
State whether the following statement is True or False:
The function f(x) = `"x"*"e"^("x" (1 - "x"))` is increasing on `((-1)/2, 1)`.
Prove that function f(x) = `x - 1/x`, x ∈ R and x ≠ 0 is increasing function
If f(x) = [x], where [x] is the greatest integer not greater than x, then f'(1') = ______.
A ladder 20 ft Jong leans against a vertical wall. The top-end slides downwards at the rate of 2 ft per second. The rate at which the lower end moves on a horizontal floor when it is 12 ft from the wall is ______
If f(x) = x3 – 15x2 + 84x – 17, then ______.
If f(x) = `x^(3/2) (3x - 10)`, x ≥ 0, then f(x) is increasing in ______.
Let f be a real valued function defined on (0, 1) ∪ (2, 4) such that f '(x) = 0 for every x, then ____________.
The interval in which the function f is given by f(x) = x2 e-x is strictly increasing, is: ____________.
Let x0 be a point in the domain of definition of a real valued function `f` and there exists an open interval I = (x0 – h, ro + h) containing x0. Then which of the following statement is/ are true for the above statement.
Let f(x) be a function such that; f'(x) = log1/3(log3(sinx + a)) (where a ∈ R). If f(x) is decreasing for all real values of x then the exhaustive solution set of a is ______.
If f(x) = x5 – 20x3 + 240x, then f(x) satisfies ______.