Advertisements
Advertisements
प्रश्न
Let \[f\left( x \right) = \tan^{- 1} \left( g\left( x \right) \right),\],where g (x) is monotonically increasing for 0 < x < \[\frac{\pi}{2} .\] Then, f(x) is
पर्याय
increasing on (0, π/2)
decreasing on (0, π/2)
increasing on (0, π/4) and decreasing on (π/4, π/2)
none of these
उत्तर
increasing on (0, \[\pi\]/2)
\[\text { Given:}g\left( x \right) \text { is increasing on }\left( 0, \frac{\pi}{2} \right). \text { Then, }\]
\[ x_1 < x_2 , \forall x_1 , x_2 \in \left( 0, \frac{\pi}{2} \right)\]
\[ \Rightarrow g\left( x_1 \right) < g\left( x_2 \right)\]
\[ {\text { Taking } tan}^{- 1} \text { on both the sides, we get } \]
\[ \tan^{- 1} \left( g\left( x_1 \right) \right) < \tan^{- 1} \left( g\left( x_2 \right) \right)\]
\[ \Rightarrow f\left( x_1 \right) < f\left( x_2 \right), \forall x_1 , x_2 \in \left( 0, \frac{\pi}{2} \right)\]
\[\text { So,}f\left( x \right)\text { is increasing on }\left( 0, \frac{\pi}{2} \right).\]
APPEARS IN
संबंधित प्रश्न
The side of an equilateral triangle is increasing at the rate of 2 cm/s. At what rate is its area increasing when the side of the triangle is 20 cm ?
Prove that the logarithmic function is strictly increasing on (0, ∞).
Prove that the function f given by f(x) = log cos x is strictly decreasing on `(0, pi/2)` and strictly increasing on `((3pi)/2, 2pi).`
Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.
Prove that the function f(x) = loga x is increasing on (0, ∞) if a > 1 and decreasing on (0, ∞), if 0 < a < 1 ?
Without using the derivative show that the function f (x) = 7x − 3 is strictly increasing function on R ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 + 9x2 + 12x + 20 ?
Find the interval in which the following function are increasing or decreasing f(x) = \[5 x^\frac{3}{2} - 3 x^\frac{5}{2}\] x > 0 ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 + 9x + 15 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \log\left( 2 + x \right) - \frac{2x}{2 + x}, x \in R\] ?
Show that f(x) = sin x − cos x is an increasing function on (−π/4, π/4) ?
Determine whether f(x) = −x/2 + sin x is increasing or decreasing on (−π/3, π/3) ?
Find the set of values of 'a' for which f(x) = x + cos x + ax + b is increasing on R ?
Write the set of values of a for which f(x) = cos x + a2 x + b is strictly increasing on R ?
f(x) = 2x − tan−1 x − log \[\left\{ x + \sqrt{x^2 + 1} \right\}\] is monotonically increasing when
The function \[f\left( x \right) = \frac{\lambda \sin x + 2 \cos x}{\sin x + \cos x}\] is increasing, if
If the function f(x) = x2 − kx + 5 is increasing on [2, 4], then
The function f(x) = −x/2 + sin x defined on [−π/3, π/3] is
If x = cos2 θ and y = cot θ then find `dy/dx at θ=pi/4`
Choose the correct alternative:
The function f(x) = x3 – 3x2 + 3x – 100, x ∈ R is
The price P for the demand D is given as P = 183 + 120D − 3D2, then the value of D for which price is increasing, is ______.
The slope of tangent at any point (a, b) is also called as ______.
State whether the following statement is True or False:
If the function f(x) = x2 + 2x – 5 is an increasing function, then x < – 1
The function f(x) = 9 - x5 - x7 is decreasing for
The area of the square increases at the rate of 0.5 cm2/sec. The rate at which its perimeter is increasing when the side of the square is 10 cm long is ______.
The sides of a square are increasing at the rate of 0.2 cm/sec. When the side is 25cm long, its area is increasing at the rate of ______
The function f(x) = sin x + 2x is ______
The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.
Let f be a real valued function defined on (0, 1) ∪ (2, 4) such that f '(x) = 0 for every x, then ____________.
The function f(x) = mx + c where m, c are constants, is a strict decreasing function for all `"x" in "R"` , if ____________.
Let f (x) = tan x – 4x, then in the interval `[- pi/3, pi/3], "f"("x")` is ____________.
The function `"f"("x") = "x"/"logx"` increases on the interval
The interval in which `y = x^2e^(-x)` is increasing with respect to `x` is
The function f(x) = `(4x^3 - 3x^2)/6 - 2sinx + (2x - 1)cosx` ______.
Let f(x) be a function such that; f'(x) = log1/3(log3(sinx + a)) (where a ∈ R). If f(x) is decreasing for all real values of x then the exhaustive solution set of a is ______.
The function f(x) = `|x - 1|/x^2` is monotonically decreasing on ______.
The function f(x) = x3 + 3x is increasing in interval ______.
Find the interval in which the function f(x) = x2e–x is strictly increasing or decreasing.