Advertisements
Advertisements
प्रश्न
Function f(x) = loga x is increasing on R, if
पर्याय
0 < a < 1
a > 1
a < 1
a > 0
उत्तर
a > 1
`f(x) log_a x = log_x/ log_a `
\[f'\left( x \right) = \frac{1}{x \log a}\]
\[\text { Given: f(x) is increasing on }\hspace{0.167em}R.\]
\[ \Rightarrow f'\left( x \right) > 0, \forall x \in R\]
\[ \Rightarrow \frac{1}{x \log a} > 0, \forall x \in R\]
\[ \Rightarrow a > 1\]
APPEARS IN
संबंधित प्रश्न
The amount of pollution content added in air in a city due to x-diesel vehicles is given by P(x) = 0.005x3 + 0.02x2 + 30x. Find the marginal increase in pollution content when 3 diesel vehicles are added and write which value is indicated in the above question.
Find the intervals in which f(x) = sin 3x – cos 3x, 0 < x < π, is strictly increasing or strictly decreasing.
Find the intervals in which the function f given by f(x) = 2x2 − 3x is
- strictly increasing
- strictly decreasing
Find the intervals in which the following functions are strictly increasing or decreasing:
x2 + 2x − 5
Find the intervals in which the following functions are strictly increasing or decreasing:
(x + 1)3 (x − 3)3
Find the intervals in which the following functions are strictly increasing or decreasing:
6 − 9x − x2
Find the values of x for `y = [x(x - 2)]^2` is an increasing function.
Prove that y = `(4sin theta)/(2 + cos theta) - theta` is an increasing function of θ in `[0, pi/2]`
Show that the function f(x) = 4x3 - 18x2 + 27x - 7 is always increasing on R.
Show that f(x) = \[\frac{1}{1 + x^2}\] is neither increasing nor decreasing on R ?
Without using the derivative show that the function f (x) = 7x − 3 is strictly increasing function on R ?
Find the interval in which the following function are increasing or decreasing f(x) = 6 − 9x − x2 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 + 9x2 + 12x + 20 ?
Determine the values of x for which the function f(x) = x2 − 6x + 9 is increasing or decreasing. Also, find the coordinates of the point on the curve y = x2 − 6x + 9 where the normal is parallel to the line y = x + 5 ?
Show that f(x) = e2x is increasing on R.
Show that f(x) = sin x is an increasing function on (−π/2, π/2) ?
Show that f(x) = sin x − cos x is an increasing function on (−π/4, π/4) ?
Find the intervals in which f(x) = log (1 + x) −\[\frac{x}{1 + x}\] is increasing or decreasing ?
Find the interval in which f(x) is increasing or decreasing f(x) = sinx(1 + cosx), 0 < x < \[\frac{\pi}{2}\] ?
Write the set of values of 'a' for which f(x) = loga x is increasing in its domain ?
The interval of increase of the function f(x) = x − ex + tan (2π/7) is
f(x) = 2x − tan−1 x − log \[\left\{ x + \sqrt{x^2 + 1} \right\}\] is monotonically increasing when
Function f(x) = | x | − | x − 1 | is monotonically increasing when
Find the intervals in which function f given by f(x) = 4x3 - 6x2 - 72x + 30 is (a) strictly increasing, (b) strictly decresing .
Prove that the function f : N → N, defined by f(x) = x2 + x + 1 is one-one but not onto. Find the inverse of f: N → S, where S is range of f.
show that f(x) = `3x + (1)/(3x)` is increasing in `(1/3, 1)` and decreasing in `(1/9, 1/3)`.
Solve the following : Find the intervals on which the function y = xx, (x > 0) is increasing and decreasing.
Test whether the following function is increasing or decreasing.
f(x) = `7/"x" - 3`, x ∈ R, x ≠ 0
Find the values of x, for which the function f(x) = x3 + 12x2 + 36𝑥 + 6 is monotonically decreasing
The slope of tangent at any point (a, b) is also called as ______.
State whether the following statement is True or False:
The function f(x) = `3/x` + 10, x ≠ 0 is decreasing
The function f(x) = `x - 1/x`, x ∈ R, x ≠ 0 is increasing
A circular pIate is contracting at the uniform rate of 5cm/sec. The rate at which the perimeter is decreasing when the radius of the circle is 10 cm Jong is
The function f(x) = mx + c where m, c are constants, is a strict decreasing function for all `"x" in "R"` , if ____________.
The function which is neither decreasing nor increasing in `(pi/2,(3pi)/2)` is ____________.
Let h(x) = f(x) - [f(x)]2 + [f(x)]3 for every real number x. Then ____________.
If f(x) = x + cosx – a then ______.