Advertisements
Advertisements
प्रश्न
Prove that y = `(4sin theta)/(2 + cos theta) - theta` is an increasing function of θ in `[0, pi/2]`
उत्तर
Given, `y = (4 sin theta)/(2 + cos theta) - theta` and interval `[0, pi/2]`
`=> "dy"/("d" theta) = ((2 + cos theta) 4 cos theta - 4 sin theta (- sin theta))/((2 + cos theta)^2) - 1`
`= (8 cos theta + 4 cos^2 + 4 sin^2 theta)/((2 + cos theta)^2) - 1`
`= (8 cos theta + 4 (cos^2 theta + sin^2 theta))/((2 + cos theta)^2) - 1`
`= (8 cos theta + 4)/((2 + cos theta)^2) - 1`
`= (8 c0s theta + 4 - (4 + cos^2 theta + 4 cos theta))/((2 + cos theta)^2)`
`= (4 cos theta - cos^2 theta)/((2 + cos theta)^2)`
`= ((4 - cos theta) cos theta)/((2 + cos theta)^2)`
cos θ > 0 in `[0, pi/2] ; 4 - cos theta > 0 [0, pi/2]`
`(∵ -1 <= cos theta <= 1, if theta in [0, pi/2]),`
`(2 + cos theta)^2 > 0 [0, pi/2]` ...(being a perfect square)
= `dy/(d theta) > 0` for all `theta in [0, pi/2]`
= y is strictly increasing function in `[0, pi/2]`
APPEARS IN
संबंधित प्रश्न
The side of an equilateral triangle is increasing at the rate of 2 cm/s. At what rate is its area increasing when the side of the triangle is 20 cm ?
Test whether the function is increasing or decreasing.
f(x) = `"x" -1/"x"`, x ∈ R, x ≠ 0,
Find the intervals in which the following functions are strictly increasing or decreasing:
x2 + 2x − 5
Find the intervals in which the following functions are strictly increasing or decreasing:
(x + 1)3 (x − 3)3
Prove that the function f given by f(x) = x2 − x + 1 is neither strictly increasing nor strictly decreasing on (−1, 1).
Show that f(x) = \[\frac{1}{1 + x^2}\] decreases in the interval [0, ∞) and increases in the interval (−∞, 0] ?
Find the interval in which the following function are increasing or decreasing f(x) = x2 + 2x − 5 ?
Find the interval in which the following function are increasing or decreasing f(x) = 5 + 36x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing f(x) = 6 + 12x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing f(x) = x8 + 6x2 ?
Show that f(x) = sin x is an increasing function on (−π/2, π/2) ?
Prove that the function f(x) = cos x is:
(i) strictly decreasing in (0, π)
(ii) strictly increasing in (π, 2π)
(iii) neither increasing nor decreasing in (0, 2π).
Find the interval in which f(x) is increasing or decreasing f(x) = sinx + |sin x|, 0 < x \[\leq 2\pi\] ?
What are the values of 'a' for which f(x) = ax is decreasing on R ?
Find 'a' for which f(x) = a (x + sin x) + a is increasing on R ?
State whether f(x) = tan x − x is increasing or decreasing its domain ?
Let f(x) = x3 + ax2 + bx + 5 sin2x be an increasing function on the set R. Then, a and b satisfy.
f(x) = 2x − tan−1 x − log \[\left\{ x + \sqrt{x^2 + 1} \right\}\] is monotonically increasing when
Function f(x) = | x | − | x − 1 | is monotonically increasing when
If the function f(x) = cos |x| − 2ax + b increases along the entire number scale, then
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).
Test whether the following functions are increasing or decreasing : f(x) = x3 – 6x2 + 12x – 16, x ∈ R.
Find the values of x for which the following functions are strictly decreasing : f(x) = `x + (25)/x`
Find the value of x, such that f(x) is decreasing function.
f(x) = 2x3 – 15x2 – 84x – 7
Find the value of x such that f(x) is decreasing function.
f(x) = x4 − 2x3 + 1
Show that f(x) = x – cos x is increasing for all x.
Test whether the function f(x) = x3 + 6x2 + 12x − 5 is increasing or decreasing for all x ∈ R
Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing
Find the values of x for which f(x) = 2x3 – 15x2 – 144x – 7 is
(a) Strictly increasing
(b) strictly decreasing
The price P for the demand D is given as P = 183 + 120D − 3D2, then the value of D for which price is increasing, is ______.
The slope of tangent at any point (a, b) is also called as ______.
If f(x) = [x], where [x] is the greatest integer not greater than x, then f'(1') = ______.
f(x) = `{{:(0"," x = 0 ), (x - 3"," x > 0):}` The function f(x) is ______
Determine for which values of x, the function y = `x^4 – (4x^3)/3` is increasing and for which values, it is decreasing.
y = x(x – 3)2 decreases for the values of x given by : ______.
The values of a for which the function f(x) = sinx – ax + b increases on R are ______.
If f(x) = `x - 1/x`, x∈R, x ≠ 0 then f(x) is increasing.
Let 'a' be a real number such that the function f(x) = ax2 + 6x – 15, x ∈ R is increasing in `(-∞, 3/4)` and decreasing in `(3/4, ∞)`. Then the function g(x) = ax2 – 6x + 15, x∈R has a ______.
The function f(x) = x3 + 3x is increasing in interval ______.