मराठी

Prove that y = 4sinθ2+cosθ-θ is an increasing function of θ in [0,π2] - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that  y = `(4sin theta)/(2 + cos theta) - theta` is an increasing function of θ in `[0, pi/2]`

बेरीज

उत्तर

Given, `y = (4 sin theta)/(2 + cos theta) - theta` and interval `[0, pi/2]`

`=> "dy"/("d" theta) = ((2 + cos theta) 4 cos theta - 4 sin theta (- sin theta))/((2 + cos theta)^2) - 1`

`= (8 cos theta + 4 cos^2 + 4 sin^2 theta)/((2 + cos theta)^2) - 1`

`= (8 cos theta + 4 (cos^2 theta + sin^2 theta))/((2 + cos theta)^2) - 1`

`= (8 cos theta + 4)/((2 + cos theta)^2) - 1`

`= (8 c0s theta + 4 - (4 + cos^2 theta + 4 cos theta))/((2 + cos theta)^2)`

`= (4 cos theta - cos^2 theta)/((2 + cos theta)^2)`

`= ((4 - cos theta) cos theta)/((2 + cos theta)^2)`

cos θ > 0 in `[0, pi/2] ; 4 - cos theta > 0 [0, pi/2]`

`(∵ -1 <= cos theta <= 1, if theta in [0, pi/2]),`

`(2 + cos theta)^2 > 0 [0, pi/2]`       ...(being a perfect square)

= `dy/(d theta) > 0` for all `theta in [0, pi/2]`

= y is strictly increasing function in `[0, pi/2]`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Application of Derivatives - Exercise 6.2 [पृष्ठ २०५]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 6 Application of Derivatives
Exercise 6.2 | Q 9 | पृष्ठ २०५

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

The side of an equilateral triangle is increasing at the rate of 2 cm/s. At what rate is its area increasing when the side of the triangle is 20 cm ?


Test whether the function is increasing or decreasing. 

f(x) = `"x" -1/"x"`, x ∈ R, x ≠ 0, 


Find the intervals in which the following functions are strictly increasing or decreasing:

x2 + 2x − 5


Find the intervals in which the following functions are strictly increasing or decreasing:

 (x + 1)3 (x − 3)3


Prove that the function f given by f(x) = x2 − x + 1 is neither strictly increasing nor strictly decreasing on (−1, 1).


Show that f(x) = \[\frac{1}{1 + x^2}\] decreases in the interval [0, ∞) and increases in the interval (−∞, 0] ?


Find the interval in which the following function are increasing or decreasing  f(x) = x2 + 2x − 5  ?


Find the interval in which the following function are increasing or decreasing f(x) = 5 + 36x + 3x2 − 2x?


Find the interval in which the following function are increasing or decreasing f(x) = 6 + 12x + 3x2 − 2x3 ?


Find the interval in which the following function are increasing or decreasing f(x) = x8 + 6x2  ?


Show that f(x) = sin x is an increasing function on (−π/2, π/2) ?


Prove that the function f(x) = cos x is:
(i) strictly decreasing in (0, π)
(ii) strictly increasing in (π, 2π)
(iii) neither increasing nor decreasing in (0, 2π).


Find the interval in which f(x) is increasing or decreasing f(x) = sinx + |sin x|, 0 < x \[\leq 2\pi\] ?


What are the values of 'a' for which f(x) = ax is decreasing on R ? 


Find 'a' for which f(x) = a (x + sin x) + a is increasing on R ?


State whether f(x) = tan x − x is increasing or decreasing its domain ?


Let f(x) = x3 + ax2 + bx + 5 sin2x be an increasing function on the set R. Then, a and b satisfy.


f(x) = 2x − tan−1 x − log \[\left\{ x + \sqrt{x^2 + 1} \right\}\] is monotonically increasing when

 


Function f(x) = | x | − | x − 1 | is monotonically increasing when

 

 

 

 

 

 

 

 

 

 

 


If the function f(x) = cos |x| − 2ax + b increases along the entire number scale, then

 


Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).


Test whether the following functions are increasing or decreasing : f(x) = x3 – 6x2 + 12x – 16, x ∈ R.


Find the values of x for which the following functions are strictly decreasing : f(x) = `x + (25)/x`


Find the value of x, such that f(x) is decreasing function.

f(x) = 2x3 – 15x2 – 84x – 7 


Find the value of x such that f(x) is decreasing function.

f(x) = x4 − 2x3 + 1


Show that f(x) = x – cos x is increasing for all x.


Test whether the function f(x) = x3 + 6x2 + 12x − 5 is increasing or decreasing for all x ∈ R


Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing


Find the values of x for which f(x) = 2x3 – 15x2 – 144x – 7 is

(a) Strictly increasing
(b) strictly decreasing


The price P for the demand D is given as P = 183 + 120D − 3D2, then the value of D for which price is increasing, is ______.


The slope of tangent at any point (a, b) is also called as ______.


If f(x) = [x], where [x] is the greatest integer not greater than x, then f'(1') = ______.


f(x) = `{{:(0","                 x = 0 ), (x - 3","   x > 0):}` The function f(x) is ______


Determine for which values of x, the function y = `x^4 – (4x^3)/3` is increasing and for which values, it is decreasing.


y = x(x – 3)2 decreases for the values of x given by : ______.


The values of a for which the function f(x) = sinx – ax + b increases on R are ______.


If f(x) = `x - 1/x`, x∈R, x ≠ 0 then f(x) is increasing.


Let 'a' be a real number such that the function f(x) = ax2 + 6x – 15, x ∈ R is increasing in `(-∞, 3/4)` and decreasing in `(3/4, ∞)`. Then the function g(x) = ax2 – 6x + 15, x∈R has a ______.


The function f(x) = x3 + 3x is increasing in interval ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×