मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Find the values of x for which f(x) = 2x3 – 15x2 – 144x – 7 is (a) Strictly increasing(b) strictly decreasing - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the values of x for which f(x) = 2x3 – 15x2 – 144x – 7 is

(a) Strictly increasing
(b) strictly decreasing

बेरीज

उत्तर

f(x) = 2x3 – 15x2 – 144x – 7

∴ f'(x) = `"d"/("d"x)(2x^3 - 15x^2 - 144x - 7)`

= 2 × 3x2 – 15 × 2x – 144 × 1 – 0

= 6x2 – 30x – 144

= 6(x2 – 5x – 24)

(a) f(x) is strictly increasing if f'(x) > 0

i.e. if 6(x2 – 5x – 24) > 0

i.e. if x2 – 5x –24 > 0

i.e. if x2 – 5x > 24

i.e. if `x^2 - 5x + (25)/(4) > 24 + (25)/(4)`

i.e. if `(x - 5/2)^2 > (121)/(4)`

i.e. if `x - (5)/(2) > (11)/(2) or x - (5)/(2) < - (11)/(2)`

i.e. if x > 8 or x < – 3

∴ f(x) is strictly increasing, if x < – 3 or x > 8.

(b) f(x) is strictly decreasing if f'(x) < 0

i.e. if 6(x2 – 5x – 24) < 0

i.e. if x2 – 5x –24 < 0

i.e. if x2 – 5x < 24

i.e. if `x^2 - 5x + (25)/(4) < 24 + (25)/(4)`

i.e. if `(x - 5/2)^2 < (121)/(4)`

i.e. if `x - (5)/(2) < (11)/(2) or x - (5)/(2) < - (11)/(2)`

i.e. if `-(11)/(2) + (5)/(2) < x - (5)/(2) + (5)/(2) < (11)/(2) + (5)/(2)`

i.e. if – 3 < x < 8

∴ f(x) is strictly decreasing, if – 3 < x < 8.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Applications of Derivatives - Exercise 2.4 [पृष्ठ ९०]

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

The amount of pollution content added in air in a city due to x-diesel vehicles is given by P(x) = 0.005x3 + 0.02x2 + 30x. Find the marginal increase in pollution content when 3 diesel vehicles are added and write which value is indicated in the above question.


Find the intervals in which f(x) = sin 3x – cos 3x, 0 < x < π, is strictly increasing or strictly decreasing.


The side of an equilateral triangle is increasing at the rate of 2 cm/s. At what rate is its area increasing when the side of the triangle is 20 cm ?


Show that the function given by f(x) = 3x + 17 is strictly increasing on R.


Prove that  y = `(4sin theta)/(2 + cos theta) - theta` is an increasing function of θ in `[0, pi/2]`


Which of the following functions are strictly decreasing on `(0, pi/2)`?

  1. cos x
  2. cos 2x
  3. cos 3x
  4. tan x

Find the intervals in which the function f given by `f(x) = (4sin x - 2x - x cos x)/(2 + cos x)` is (i) increasing (ii) decreasing.


Show that f(x) = \[\frac{1}{x}\] is a decreasing function on (0, ∞) ?


Without using the derivative show that the function f (x) = 7x − 3 is strictly increasing function on R ?


Find the interval in which the following function are increasing or decreasing f(x) = 8 + 36x + 3x2 − 2x?


Find the interval in which the following function are increasing or decreasing  f(x) = 2x3 − 24x + 7 ?


Find the interval in which the following function are increasing or decreasing f(x) = x8 + 6x2  ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \log\left( 2 + x \right) - \frac{2x}{2 + x}, x \in R\] ?


Show that f(x) = e1/x, x ≠ 0 is a decreasing function for all x ≠ 0 ?


Show that f(x) = x9 + 4x7 + 11 is an increasing function for all x ∈ R ? 


Prove that the function f given by f(x) = x − [x] is increasing in (0, 1) ?


Prove that the following function is increasing on R f \[(x) =\]3 \[x^5\] + 40 \[x^3\] + 240\[x\] ?


Prove that the function f given by f(x) = log cos x is strictly increasing on (−π/2, 0) and strictly decreasing on (0, π/2) ?


Prove that the function f given by f(x) = x3 − 3x2 + 4x is strictly increasing on R ?


Prove that the function f(x) = cos x is:
(i) strictly decreasing in (0, π)
(ii) strictly increasing in (π, 2π)
(iii) neither increasing nor decreasing in (0, 2π).


Find the value(s) of a for which f(x) = x3 − ax is an increasing function on R ?


What are the values of 'a' for which f(x) = ax is increasing on R ?


Write the set of values of k for which f(x) = kx − sin x is increasing on R ?


Write the set of values of a for which the function f(x) = ax + b is decreasing for all x ∈ R ?


Write the set of values of a for which f(x) = cos x + a2 x + b is strictly increasing on R ?


The interval of increase of the function f(x) = x − ex + tan (2π/7) is


Let f(x) = x3 − 6x2 + 15x + 3. Then,


The function \[f\left( x \right) = \frac{\lambda \sin x + 2 \cos x}{\sin x + \cos x}\] is increasing, if

 


Function f(x) = loga x is increasing on R, if


If the function f(x) = x3 − 9kx2 + 27x + 30 is increasing on R, then


The radius r of a right circular cylinder is increasing uniformly at the rate of 0·3 cm/s and its height h is decreasing at the rate of 0·4 cm/s. When r = 3·5 cm and h = 7 cm, find the rate of change of the curved surface area of the cylinder. \[\left[ \text{ Use } \pi = \frac{22}{7} \right]\]


If x = cos2 θ and y = cot θ then find `dy/dx  at  θ=pi/4` 


Find `dy/dx,if e^x+e^y=e^(x-y)`


Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).


Find the intervals in which function f given by f(x)  = 4x3 - 6x2 - 72x + 30 is (a) strictly increasing, (b) strictly decresing .


The total cost of manufacturing x articles is C = 47x + 300x2 − x4.  Find x, for which average cost is increasing.


Find the intervals in which the function `f("x") = (4sin"x")/(2+cos"x") -"x";0≤"x"≤2pi` is strictly increasing or strictly decreasing. 


The edge of a cube is decreasing at the rate of`( 0.6"cm")/sec`. Find the rate at which its volume is decreasing, when the edge of the cube is 2 cm.


Test whether the following functions are increasing or decreasing : f(x) = x3 – 6x2 + 12x – 16, x ∈ R.


Find the values of x for which the following functions are strictly increasing : f(x) = 2x3 – 3x2 – 12x + 6


Find the values of x for which the following functions are strictly increasing:

f(x) = 3 + 3x – 3x2 + x3


Find the values of x for which the following func- tions are strictly increasing : f(x) = x3 – 6x2 – 36x + 7


Show that f(x) = x – cos x is increasing for all x.


Solve the following : Find the intervals on which the function y = xx, (x > 0) is increasing and decreasing.


Test whether the following function is increasing or decreasing.

f(x) = `7/"x" - 3`, x ∈ R, x ≠ 0


Find the value of x, such that f(x) is increasing function.

f(x) = 2x3 - 15x2 - 144x - 7 


Find the value of x, such that f(x) is decreasing function.

f(x) = 2x3 – 15x2 – 84x – 7 


Prove that function f(x) = `x - 1/x`, x ∈ R and x ≠ 0 is increasing function


Show that the function f(x) = x3 + 10x + 7 for x ∈ R is strictly increasing


Test whether the following function f(x) = 2 – 3x + 3x2 – x3, x ∈ R is increasing or decreasing


Find the values of x for which the function f(x) = 2x3 – 6x2 + 6x + 24 is strictly increasing


State whether the following statement is True or False: 

If the function f(x) = x2 + 2x – 5 is an increasing function, then x < – 1


Find the values of x such that f(x) = 2x3 – 15x2 – 144x – 7 is decreasing function


A circular pIate is contracting at the uniform rate of 5cm/sec. The rate at which the perimeter is decreasing when the radius of the circle is 10 cm Jong is


If f(x) = [x], where [x] is the greatest integer not greater than x, then f'(1') = ______.


The function f(x) = sin x + 2x is ______ 


The values of k for which the function f(x) = kx3 – 6x2 + 12x + 11 may be increasing on R are ______.


If f(x) = x3 – 15x2 + 84x – 17, then ______.


If f(x) = `x^(3/2) (3x - 10)`, x ≥ 0, then f(x) is increasing in ______.


Which of the following functions is decreasing on `(0, pi/2)`?


The values of a for which the function f(x) = sinx – ax + b increases on R are ______.


The function f(x) = mx + c where m, c are constants, is a strict decreasing function for all `"x" in "R"` , if ____________.


2x3 - 6x + 5 is an increasing function, if ____________.


The function f(x) = tan-1 (sin x + cos x) is an increasing function in:


`"f"("x") = (("e"^(2"x") - 1)/("e"^(2"x") + 1))` is ____________.


Show that function f(x) = tan x is increasing in `(0, π/2)`.


If f(x) = `x - 1/x`, x∈R, x ≠ 0 then f(x) is increasing.


The interval in which the function f(x) = `(4x^2 + 1)/x` is decreasing is ______.


If f(x) = `x/(x^2 + 1)` is increasing function then the value of x lies in ______.


A function f is said to be increasing at a point c if ______.


The function f(x) = sin4x + cos4x is an increasing function if ______.


The intevral in which the function f(x) = 5 + 36x – 3x2 increases will be ______.


In which one of the following intervals is the function f(x) = x3 – 12x increasing?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×