Advertisements
Advertisements
प्रश्न
Write the set of values of k for which f(x) = kx − sin x is increasing on R ?
उत्तर
\[f\left( x \right) = kx - \sin x\]
\[f'\left( x \right) = k - \cos x\]
\[\text { For f(x) to be increasing, we must have }\]
\[f'\left( x \right) > 0\]
\[ \Rightarrow k - \cos x > 0\]
\[ \Rightarrow \cos x < k\]
\[\text { We know that the maximum value of cos x is 1 }.\]
\[\text { Since cos x<k,the minimum value of k is 1 }.\]
\[\Rightarrow k \in \left( 1, \infty \right)\]
APPEARS IN
संबंधित प्रश्न
Price P for demand D is given as P = 183 +120D - 3D2 Find D for which the price is increasing
The amount of pollution content added in air in a city due to x-diesel vehicles is given by P(x) = 0.005x3 + 0.02x2 + 30x. Find the marginal increase in pollution content when 3 diesel vehicles are added and write which value is indicated in the above question.
Find the value(s) of x for which y = [x(x − 2)]2 is an increasing function.
Find the intervals in which the function f given by f(x) = 2x3 − 3x2 − 36x + 7 is
- Strictly increasing
- Strictly decreasing
Find the intervals in which the following functions are strictly increasing or decreasing:
−2x3 − 9x2 − 12x + 1
Prove that y = `(4sin theta)/(2 + cos theta) - theta` is an increasing function of θ in `[0, pi/2]`
On which of the following intervals is the function f given byf(x) = x100 + sin x –1 strictly decreasing?
Find the intervals in which the function f given by `f(x) = x^3 + 1/x^3 x != 0`, is (i) increasing (ii) decreasing.
Prove that f(x) = ax + b, where a, b are constants and a < 0 is a decreasing function on R ?
Find the interval in which the following function are increasing or decreasing f(x) = (x − 1) (x − 2)2 ?
Show that f(x) = log sin x is increasing on (0, π/2) and decreasing on (π/2, π) ?
Show that f(x) = x3 − 15x2 + 75x − 50 is an increasing function for all x ∈ R ?
Show that f(x) = tan−1 (sin x + cos x) is a decreasing function on the interval (π/4, π/2) ?
Show that f(x) = tan−1 x − x is a decreasing function on R ?
Show that the function f given by f(x) = 10x is increasing for all x ?
Show that f(x) = x2 − x sin x is an increasing function on (0, π/2) ?
Find 'a' for which f(x) = a (x + sin x) + a is increasing on R ?
State whether f(x) = tan x − x is increasing or decreasing its domain ?
The function f(x) = 2 log (x − 2) − x2 + 4x + 1 increases on the interval
Show that the function f given by f(x) = tan–1 (sin x + cos x) is decreasing for all \[x \in \left( \frac{\pi}{4}, \frac{\pi}{2} \right) .\]
Prove that the function `f(x) = x^3- 6x^2 + 12x+5` is increasing on R.
If the demand function is D = 50 - 3p - p2, find the elasticity of demand at (a) p = 5 (b) p = 2 , Interpret your result.
Find the value of x, such that f(x) is increasing function.
f(x) = 2x3 - 15x2 + 36x + 1
Find the value of x, such that f(x) is increasing function.
f(x) = x2 + 2x - 5
Choose the correct alternative.
The function f(x) = x3 - 3x2 + 3x - 100, x ∈ R is
State whether the following statement is True or False:
The function f(x) = `"x"*"e"^("x" (1 - "x"))` is increasing on `((-1)/2, 1)`.
Find the values of x for which f(x) = 2x3 – 15x2 – 144x – 7 is
(a) Strictly increasing
(b) strictly decreasing
Show that the function f(x) = `(x - 2)/(x + 1)`, x ≠ – 1 is increasing
Let f(x) = x3 + 9x2 + 33x + 13, then f(x) is ______.
If f(x) = x3 – 15x2 + 84x – 17, then ______.
The values of a for which the function f(x) = sinx – ax + b increases on R are ______.
If f(x) = sin x – cos x, then interval in which function is decreasing in 0 ≤ x ≤ 2 π, is:
If f(x) = `x - 1/x`, x∈R, x ≠ 0 then f(x) is increasing.
Let f(x) be a function such that; f'(x) = log1/3(log3(sinx + a)) (where a ∈ R). If f(x) is decreasing for all real values of x then the exhaustive solution set of a is ______.
Function f(x) = `log(1 + x) - (2x)/(2 + x)` is monotonically increasing when ______.
Function f(x) = x100 + sinx – 1 is increasing for all x ∈ ______.
Read the following passage:
The use of electric vehicles will curb air pollution in the long run. V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2` where t represents the time and t = 1, 2, 3, ...... corresponds to years 2001, 2002, 2003, ...... respectively. |
Based on the above information, answer the following questions:
- Can the above function be used to estimate number of vehicles in the year 2000? Justify. (2)
- Prove that the function V(t) is an increasing function. (2)
Find the values of x for which the function f(x) = `x/(x^2 + 1)` is strictly decreasing.