Advertisements
Advertisements
प्रश्न
Show that f(x) = tan−1 (sin x + cos x) is a decreasing function on the interval (π/4, π/2) ?
उत्तर
\[f\left( x \right) = \tan^{- 1} \left( \sin x + \cos x \right)\]
\[f'\left( x \right) = \frac{1}{1 + \left( \sin x + \cos x \right)^2}\left( \cos x - \sin x \right)\]
\[ = \frac{1}{1 + 1 + 2 \sin x \cos x}\left( \cos x - \sin x \right)\]
\[ = \frac{\left( \cos x - \sin x \right)}{2 + \sin 2x}\]
\[\text { Here },\]
\[\frac{\pi}{4} < x < \frac{\pi}{2}\]
\[ \Rightarrow \frac{\pi}{2} < 2x < \pi\]
\[ \Rightarrow \sin 2x > 0\]
\[ \Rightarrow 2 + \sin 2x > 0 . . . \left( 1 \right)\]
\[\text { Also,} \]
\[\frac{\pi}{4} < x < \frac{\pi}{2}\]
\[\cos x < \sin x\]
\[ \Rightarrow \cos x - \sin x < 0 . . . \left( 2 \right)\]
\[f'\left( x \right) = \frac{\left( \cos x - \sin x \right)}{2 + \sin 2x} < 0, \forall x \in \left( \frac{\pi}{4}, \frac{\pi}{2} \right) \left[ \text { From eqs } . (1) \text { and } (2) \right]\]
\[\text { So },f\left( x \right)\text { is decreasing on }\left( \frac{\pi}{4}, \frac{\pi}{2} \right).\]
APPEARS IN
संबंधित प्रश्न
Find the intervals in which the function f(x) = 3x4 − 4x3 − 12x2 + 5 is
(a) strictly increasing
(b) strictly decreasing
Test whether the function is increasing or decreasing.
f(x) = `"x" -1/"x"`, x ∈ R, x ≠ 0,
The function f (x) = x3 – 3x2 + 3x – 100, x∈ R is _______.
(A) increasing
(B) decreasing
(C) increasing and decreasing
(D) neither increasing nor decreasing
Show that the function given by f(x) = 3x + 17 is strictly increasing on R.
Find the intervals in which the following functions are strictly increasing or decreasing:
−2x3 − 9x2 − 12x + 1
Find the values of x for `y = [x(x - 2)]^2` is an increasing function.
Prove that f(x) = ax + b, where a, b are constants and a > 0 is an increasing function on R ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 12x2 + 36x + 17 ?
Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x ?
Show that the function x2 − x + 1 is neither increasing nor decreasing on (0, 1) ?
Show that f(x) = tan−1 x − x is a decreasing function on R ?
Find the intervals in which f(x) = log (1 + x) −\[\frac{x}{1 + x}\] is increasing or decreasing ?
Prove that the function f given by f(x) = log cos x is strictly increasing on (−π/2, 0) and strictly decreasing on (0, π/2) ?
Find the values of b for which the function f(x) = sin x − bx + c is a decreasing function on R ?
Show that f(x) = x + cos x − a is an increasing function on R for all values of a ?
Find the interval in which f(x) is increasing or decreasing f(x) = sinx(1 + cosx), 0 < x < \[\frac{\pi}{2}\] ?
What are the values of 'a' for which f(x) = ax is decreasing on R ?
Write the set of values of 'a' for which f(x) = loga x is increasing in its domain ?
Find the values of 'a' for which the function f(x) = sin x − ax + 4 is increasing function on R ?
Function f(x) = | x | − | x − 1 | is monotonically increasing when
Every invertible function is
Function f(x) = loga x is increasing on R, if
If the function f(x) = x3 − 9kx2 + 27x + 30 is increasing on R, then
The function f(x) = x9 + 3x7 + 64 is increasing on
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).
Find the value of x, such that f(x) is decreasing function.
f(x) = 2x3 – 15x2 – 84x – 7
The total cost function for production of articles is given as C = 100 + 600x – 3x2, then the values of x for which the total cost is decreasing is ______
State whether the following statement is True or False:
If the function f(x) = x2 + 2x – 5 is an increasing function, then x < – 1
A ladder 20 ft Jong leans against a vertical wall. The top-end slides downwards at the rate of 2 ft per second. The rate at which the lower end moves on a horizontal floor when it is 12 ft from the wall is ______
Given P(x) = x4 + ax3 + bx2 + cx + d such that x = 0 is the only real root of P'(x) = 0. If P(-1) < P(1), then in the interval [-1, 1] ______
Prove that the function f(x) = tanx – 4x is strictly decreasing on `((-pi)/3, pi/3)`
Show that f(x) = tan–1(sinx + cosx) is an increasing function in `(0, pi/4)`
y = x(x – 3)2 decreases for the values of x given by : ______.
In case of decreasing functions, slope of tangent and hence derivative is ____________.
Let f (x) = tan x – 4x, then in the interval `[- pi/3, pi/3], "f"("x")` is ____________.
Let f(x) = tan–1`phi`(x), where `phi`(x) is monotonically increasing for `0 < x < π/2`. Then f(x) is ______.
If f(x) = x5 – 20x3 + 240x, then f(x) satisfies ______.
Function f(x) = `log(1 + x) - (2x)/(2 + x)` is monotonically increasing when ______.
y = log x satisfies for x > 1, the inequality ______.